Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur O. Muránsky
Documents disponibles écrits par cet auteur
Affiner la rechercheInvestigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy / O. Muránsky in Acta materialia, Vol. 58 N° 5 (Mars 2010)
[article]
in Acta materialia > Vol. 58 N° 5 (Mars 2010) . - pp. 1503–1517
Titre : Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy : Combined in situ neutron diffraction and acoustic emission Type de document : texte imprimé Auteurs : O. Muránsky, Auteur ; M.R. Barnett, Auteur ; D. G. Carr, Auteur Année de publication : 2011 Article en page(s) : pp. 1503–1517 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Magnesium Deformation twinning Twin nucleation Neutron diffraction Acoustic emission Résumé : Neutron diffraction and acoustic emission were used in a single in situ experiment in order to study the deformation twinning of two ZM20 Mg alloys with significantly different grain sizes at room temperature. The combination of these two techniques facilitates the distinction between twin nucleation and twin growth. It is shown that yielding and immediate post-yielding plasticity in compression along the extrusion direction is governed primarily by twin nucleation, whereas plasticity at higher strains is presumably governed by twin growth and dislocation slip. It is further shown that, in the fine-grained alloy, collaborative twin nucleation in many grains dominates yielding, whereas twin nucleation in the coarse-grained alloy is progressive and occurs over a larger strain range. In addition, it is shown that, despite twin nucleation stresses increasing with decreasing grain size, roughly the same overall volume fraction of twins is formed in both fine and coarse parent grains. This confirms the difficulty of the alternative deformation modes and suggests a negligible suppressive effect of grain size on twinning in the case of the strongly textured fine-grained alloy. The current results also show that twins in the coarse-grained alloy are born less relaxed with respect to surrounding polycrystalline aggregate than those in the fine-grained alloy. This is believed to lead to lower reversal stresses acting on twin grains in the coarse-grained alloy upon unloading and thus to less untwinning and thus to a smaller pseudoelastic-like hysteresis. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007605 [article] Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy : Combined in situ neutron diffraction and acoustic emission [texte imprimé] / O. Muránsky, Auteur ; M.R. Barnett, Auteur ; D. G. Carr, Auteur . - 2011 . - pp. 1503–1517.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 5 (Mars 2010) . - pp. 1503–1517
Mots-clés : Magnesium Deformation twinning Twin nucleation Neutron diffraction Acoustic emission Résumé : Neutron diffraction and acoustic emission were used in a single in situ experiment in order to study the deformation twinning of two ZM20 Mg alloys with significantly different grain sizes at room temperature. The combination of these two techniques facilitates the distinction between twin nucleation and twin growth. It is shown that yielding and immediate post-yielding plasticity in compression along the extrusion direction is governed primarily by twin nucleation, whereas plasticity at higher strains is presumably governed by twin growth and dislocation slip. It is further shown that, in the fine-grained alloy, collaborative twin nucleation in many grains dominates yielding, whereas twin nucleation in the coarse-grained alloy is progressive and occurs over a larger strain range. In addition, it is shown that, despite twin nucleation stresses increasing with decreasing grain size, roughly the same overall volume fraction of twins is formed in both fine and coarse parent grains. This confirms the difficulty of the alternative deformation modes and suggests a negligible suppressive effect of grain size on twinning in the case of the strongly textured fine-grained alloy. The current results also show that twins in the coarse-grained alloy are born less relaxed with respect to surrounding polycrystalline aggregate than those in the fine-grained alloy. This is believed to lead to lower reversal stresses acting on twin grains in the coarse-grained alloy upon unloading and thus to less untwinning and thus to a smaller pseudoelastic-like hysteresis. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007605