Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Piyawan Woratat
Documents disponibles écrits par cet auteur
Affiner la rechercheA cyclic life prediction approach for directionally solidified nickel superalloys / Roland Mücke in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 5 (Mai 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 5 (Mai 2010) . - 07 p.
Titre : A cyclic life prediction approach for directionally solidified nickel superalloys Type de document : texte imprimé Auteurs : Roland Mücke, Auteur ; Piyawan Woratat, Auteur Année de publication : 2011 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Creep fracture Fracture toughness Gas turbines Remaining life assessment Superalloys Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The performance of heavy duty gas turbines is closely related to the material capability of the components of the first turbine stage. In modern gas turbines single crystal (SX) and directionally solidified (DS) nickel superalloys are applied, which, compared with their conventionally cast version, hold a higher cyclic life and a significantly improved creep rupture strength. SX and DS nickel superalloys feature a significant directional dependence of the material properties. To fully exploit the material capability, the anisotropy needs to be accounted for in both the constitutive and lifing model. In this context, the paper addresses a cyclic life prediction procedure for DS materials with transverse isotropic material symmetry. Thereby, the well-known local approaches to fatigue life prediction of isotropic materials under uniaxial loading are extended toward materials with transverse isotropic properties under multiaxial load conditions. As part of the proposed methodology, a Hill type function is utilized for describing the anisotropic failure behavior. The coefficients of the Hill surface are determined from the actual multiaxial loading, material symmetry, and anisotropic fatigue strength of the material. In this paper we first characterize the anisotropy of DS superalloys. We then present the general mathematical framework of the proposed lifing procedure. Later we discuss a validation of the cyclic life model by comparing the measured and predicted fatigue lives of the test specimens. Finally, the proposed method is applied to the cyclic life prediction of a gas turbine blade. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000005 [...] [article] A cyclic life prediction approach for directionally solidified nickel superalloys [texte imprimé] / Roland Mücke, Auteur ; Piyawan Woratat, Auteur . - 2011 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 5 (Mai 2010) . - 07 p.
Mots-clés : Blades Creep fracture Fracture toughness Gas turbines Remaining life assessment Superalloys Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The performance of heavy duty gas turbines is closely related to the material capability of the components of the first turbine stage. In modern gas turbines single crystal (SX) and directionally solidified (DS) nickel superalloys are applied, which, compared with their conventionally cast version, hold a higher cyclic life and a significantly improved creep rupture strength. SX and DS nickel superalloys feature a significant directional dependence of the material properties. To fully exploit the material capability, the anisotropy needs to be accounted for in both the constitutive and lifing model. In this context, the paper addresses a cyclic life prediction procedure for DS materials with transverse isotropic material symmetry. Thereby, the well-known local approaches to fatigue life prediction of isotropic materials under uniaxial loading are extended toward materials with transverse isotropic properties under multiaxial load conditions. As part of the proposed methodology, a Hill type function is utilized for describing the anisotropic failure behavior. The coefficients of the Hill surface are determined from the actual multiaxial loading, material symmetry, and anisotropic fatigue strength of the material. In this paper we first characterize the anisotropy of DS superalloys. We then present the general mathematical framework of the proposed lifing procedure. Later we discuss a validation of the cyclic life model by comparing the measured and predicted fatigue lives of the test specimens. Finally, the proposed method is applied to the cyclic life prediction of a gas turbine blade. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000005 [...]