Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Dae Kun Kwon
Documents disponibles écrits par cet auteur
Affiner la recherchePeak factors for non-gaussian load effects revisited / Dae Kun Kwon in Journal of structural engineering, Vol. 137 N° 12 (Décembre 2011)
[article]
in Journal of structural engineering > Vol. 137 N° 12 (Décembre 2011) . - pp. 1611-1619
Titre : Peak factors for non-gaussian load effects revisited Type de document : texte imprimé Auteurs : Dae Kun Kwon, Auteur ; Ahsan Kareem, Auteur Année de publication : 2012 Article en page(s) : pp. 1611-1619 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Peak factor Non-Gaussian process Wind pressure Buildings Low-rise Wind loads Probability density functions Structural response Structural safety Résumé : The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional peak factor on the basis of Gaussian processes. This assumption breaks down when the loading process exhibits non-Gaussianity, in which a conventional peak factor yields relatively nonconservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. To realistically capture the salient characteristics of non-Gaussian load effects and incorporate these in the estimates of their extremes, this study examines the peak factor for non-Gaussian processes, which can be used for estimating the expected value of the positive and negative extremes of non-Gaussian load effects. The efficacy of previously introduced analytical expressions for the peak factor of non-Gaussian processes on the basis of a moment-based Hermite model is evaluated and the variance of the estimates in standard deviation is derived. In addition, some improvements to the estimation of the peak factor and its standard deviation are discussed. Examples, including immediate applications to other areas, illustrate the effectiveness of this model-based peak factor approach. DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i12/p1611_s1?isAuthorized=no [article] Peak factors for non-gaussian load effects revisited [texte imprimé] / Dae Kun Kwon, Auteur ; Ahsan Kareem, Auteur . - 2012 . - pp. 1611-1619.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 137 N° 12 (Décembre 2011) . - pp. 1611-1619
Mots-clés : Peak factor Non-Gaussian process Wind pressure Buildings Low-rise Wind loads Probability density functions Structural response Structural safety Résumé : The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional peak factor on the basis of Gaussian processes. This assumption breaks down when the loading process exhibits non-Gaussianity, in which a conventional peak factor yields relatively nonconservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. To realistically capture the salient characteristics of non-Gaussian load effects and incorporate these in the estimates of their extremes, this study examines the peak factor for non-Gaussian processes, which can be used for estimating the expected value of the positive and negative extremes of non-Gaussian load effects. The efficacy of previously introduced analytical expressions for the peak factor of non-Gaussian processes on the basis of a moment-based Hermite model is evaluated and the variance of the estimates in standard deviation is derived. In addition, some improvements to the estimation of the peak factor and its standard deviation are discussed. Examples, including immediate applications to other areas, illustrate the effectiveness of this model-based peak factor approach. DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v137/i12/p1611_s1?isAuthorized=no