Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Richa Raj
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical simulations of liquid — liquid flows in microchannels / Richa Raj in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10606-10614
Titre : Numerical simulations of liquid — liquid flows in microchannels Type de document : texte imprimé Auteurs : Richa Raj, Auteur ; Nikita Mathur, Auteur ; Vivek V. Buwa, Auteur Année de publication : 2011 Article en page(s) : pp. 10606-10614 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Liquid liquid flow Numerical simulation Résumé : Liquid-liquid flows in microchannels are important to microreactors/microfluidic devices that are used to carry out liquid-liquid reactions, extractions, emulsifications, etc. In this work, we report numerical investigations of drop/slug formation and flow regimes for liquid-liquid (oil-water) flow in microchannels. The Volume of Fluid (VOF) method was used to simulate the dynamics of water drop/slug formation in silicon oil, and the predicted drop/slug shapes/lengths were compared with previous literature measurements [Garstecki et al., Lab Chip 2006, 6, 437-446]. The effects of flow rates of water and oil phases (0.019―0.417 and 0.004―0.14 μL/s, respectively), channel size, liquid-liquid distributor (T-junction and Y-junction), and liquid viscosity on liquid-liquid flow regimes and slug lengths were investigated. The predicted drop/slug formation dynamics/slug lengths agreed satisfactorily with the aforementioned Garstecki et al. literature measurements for Qwater/Qoil in the range of 0.1-1.7. However, for Qwater/Qoil > 1.7, unlike the (long) slug flow reported in the aforementioned Garstecki et al. literature, a parallel flow was observed in the numerical simulations. The effect of wall adhesion (contact angle) on the flow regimes and slug lengths was also investigated. The experimentally validated computational model will be useful to simulate mixing, transport processes, and chemical reactions in microchannels. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447953 [article] Numerical simulations of liquid — liquid flows in microchannels [texte imprimé] / Richa Raj, Auteur ; Nikita Mathur, Auteur ; Vivek V. Buwa, Auteur . - 2011 . - pp. 10606-10614.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10606-10614
Mots-clés : Liquid liquid flow Numerical simulation Résumé : Liquid-liquid flows in microchannels are important to microreactors/microfluidic devices that are used to carry out liquid-liquid reactions, extractions, emulsifications, etc. In this work, we report numerical investigations of drop/slug formation and flow regimes for liquid-liquid (oil-water) flow in microchannels. The Volume of Fluid (VOF) method was used to simulate the dynamics of water drop/slug formation in silicon oil, and the predicted drop/slug shapes/lengths were compared with previous literature measurements [Garstecki et al., Lab Chip 2006, 6, 437-446]. The effects of flow rates of water and oil phases (0.019―0.417 and 0.004―0.14 μL/s, respectively), channel size, liquid-liquid distributor (T-junction and Y-junction), and liquid viscosity on liquid-liquid flow regimes and slug lengths were investigated. The predicted drop/slug formation dynamics/slug lengths agreed satisfactorily with the aforementioned Garstecki et al. literature measurements for Qwater/Qoil in the range of 0.1-1.7. However, for Qwater/Qoil > 1.7, unlike the (long) slug flow reported in the aforementioned Garstecki et al. literature, a parallel flow was observed in the numerical simulations. The effect of wall adhesion (contact angle) on the flow regimes and slug lengths was also investigated. The experimentally validated computational model will be useful to simulate mixing, transport processes, and chemical reactions in microchannels. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447953