Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yonduck Sung
Documents disponibles écrits par cet auteur
Affiner la rechercheMultiscale modeling of TiO2 nanoparticle production in flame reactors / Maulik Mehta in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10663–10673
Titre : Multiscale modeling of TiO2 nanoparticle production in flame reactors : Effect of chemical mechanism Type de document : texte imprimé Auteurs : Maulik Mehta, Auteur ; Yonduck Sung, Auteur ; Venkatramanan Raman, Auteur Année de publication : 2011 Article en page(s) : pp. 10663–10673 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Nanoparticle Chemical mechanism Résumé : For titanium dioxide (TiO2) nanoparticles manufactured in flame reactors, the precursor is injected into a pre-existing flame, exposing it to a high-temperature gas phase, leading to nucleation and particle growth. Predictive modeling of this chemical process requires simultaneous development of detailed chemical mechanisms describing gas-phase combustion and particle evolution, as well as advanced computational tools for describing the turbulent flow field and its interactions with the chemical processes. Here, a multiscale computational tool for flame-based TiO2 nanoparticle synthesis is developed and a flamelet model representing detailed chemistry for particle nucleation is proposed. The effect of different chemical mechanisms (i.e., one-step, detailed, flamelet) on the prediction of nanoparticle nucleation is investigated using a plug-flow reactor and a partially stirred tank reactor to model the flow field. These simulations demonstrate that particle nucleation occurs much later in the flame with detailed titanium oxidation chemistry, compared to one-step chemistry. Finally, a large-eddy simulation tool is developed to study the effect of precursor injection configuration on nanoparticle formation in turbulent flames. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100560h [article] Multiscale modeling of TiO2 nanoparticle production in flame reactors : Effect of chemical mechanism [texte imprimé] / Maulik Mehta, Auteur ; Yonduck Sung, Auteur ; Venkatramanan Raman, Auteur . - 2011 . - pp. 10663–10673.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10663–10673
Mots-clés : Nanoparticle Chemical mechanism Résumé : For titanium dioxide (TiO2) nanoparticles manufactured in flame reactors, the precursor is injected into a pre-existing flame, exposing it to a high-temperature gas phase, leading to nucleation and particle growth. Predictive modeling of this chemical process requires simultaneous development of detailed chemical mechanisms describing gas-phase combustion and particle evolution, as well as advanced computational tools for describing the turbulent flow field and its interactions with the chemical processes. Here, a multiscale computational tool for flame-based TiO2 nanoparticle synthesis is developed and a flamelet model representing detailed chemistry for particle nucleation is proposed. The effect of different chemical mechanisms (i.e., one-step, detailed, flamelet) on the prediction of nanoparticle nucleation is investigated using a plug-flow reactor and a partially stirred tank reactor to model the flow field. These simulations demonstrate that particle nucleation occurs much later in the flame with detailed titanium oxidation chemistry, compared to one-step chemistry. Finally, a large-eddy simulation tool is developed to study the effect of precursor injection configuration on nanoparticle formation in turbulent flames. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100560h