Titre : |
A comparison study on EEG signal classification using Component analysis (PCA, ICA) and support vector machine (SVM) |
Type de document : |
texte imprimé |
Auteurs : |
Hadjer Azli, Auteur ; Mourad Adnane, Directeur de thèse |
Editeur : |
[S.l.] : [s.n.] |
Année de publication : |
2017 |
Importance : |
55 f. |
Présentation : |
ill. |
Format : |
30 cm. |
Accompagnement : |
1 CD-ROM. |
Note générale : |
Mémoire de Master : Electronique : Alger, Ecole Nationale Polytechnique : 2017
Bibliogr. f. 48-49. - Annexes f. 50-55 |
Langues : |
Anglais (eng) |
Mots-clés : |
Electroencephalogram (EEG)
Discrete Wavelet Transform (DWT)
Independent Component Analysis (ICA)
Principal (PCA)
Support Vector Machine (SVM) Epileptic Seizure |
Index. décimale : |
Ms13017 |
Résumé : |
This studyaims to analyze and process Electroencephalogram (EEG)signals using an automated classification method with Support vector machine
(SVM), to categorize patient’s seizure: epileptic or non-epileptic.
We employed a framework of signal analysis techniques, and we started by applying discrete wavelet decomposition(DWT) on the original signal, followed by extracting a set of statistical features and building the feature matrix.
Next, a feature reduction PCA and ICA were explored to represent the data in a new distinct space with reduced dimension.
Finally, an SVM algorithm was trained and used upon a set of testing data to be classified: epileptic or not.
The performance of classification process due to different methods is presented and compared to show the excellent classification process. |
A comparison study on EEG signal classification using Component analysis (PCA, ICA) and support vector machine (SVM) [texte imprimé] / Hadjer Azli, Auteur ; Mourad Adnane, Directeur de thèse . - [S.l.] : [s.n.], 2017 . - 55 f. : ill. ; 30 cm. + 1 CD-ROM. Mémoire de Master : Electronique : Alger, Ecole Nationale Polytechnique : 2017
Bibliogr. f. 48-49. - Annexes f. 50-55 Langues : Anglais ( eng)
Mots-clés : |
Electroencephalogram (EEG)
Discrete Wavelet Transform (DWT)
Independent Component Analysis (ICA)
Principal (PCA)
Support Vector Machine (SVM) Epileptic Seizure |
Index. décimale : |
Ms13017 |
Résumé : |
This studyaims to analyze and process Electroencephalogram (EEG)signals using an automated classification method with Support vector machine
(SVM), to categorize patient’s seizure: epileptic or non-epileptic.
We employed a framework of signal analysis techniques, and we started by applying discrete wavelet decomposition(DWT) on the original signal, followed by extracting a set of statistical features and building the feature matrix.
Next, a feature reduction PCA and ICA were explored to represent the data in a new distinct space with reduced dimension.
Finally, an SVM algorithm was trained and used upon a set of testing data to be classified: epileptic or not.
The performance of classification process due to different methods is presented and compared to show the excellent classification process. |
|