Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur John Van Der Schaaf
Documents disponibles écrits par cet auteur
Affiner la rechercheComparative modeling study on the performance of solid foam as a structured catalyst support in multiphase reactors / Patrick W. A. M. Wenmakers in Industrial & engineering chemistry research, Vol. 49 N° 11 (Juin 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 11 (Juin 2010) . - pp. 5353–5366
Titre : Comparative modeling study on the performance of solid foam as a structured catalyst support in multiphase reactors Type de document : texte imprimé Auteurs : Patrick W. A. M. Wenmakers, Auteur ; John Van Der Schaaf, Auteur ; Ben F. M. Kuster, Auteur Année de publication : 2010 Article en page(s) : pp. 5353–5366 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Catalyst Multiphase Reactors Résumé : In this paper, the performance of two types of advanced foam packings (viz., Hairy Foam and washcoated Solid Foam) is compared with that of a packed bed of porous spherical particles. The comparison is done for two different types of reactions (viz., the slow hydrogenation of cinnamaldehyde and the fast hydrogenation of 3-methyl-1-pentyn-3-ol) and under two flow conditions (viz., upflow and downflow), in terms of selectivity, conversion, pressure drop, and reactor height. Under similar operating conditions, the simulation results show that, for both reactions, the Hairy Foam and Solid Foam packings reach higher selectivities and conversions than the packed bed of particles. However, in the case of the slow reaction, the pressure drop for the Hairy and Solid Foam packings is significantly larger than that for the bed of particles. This is due to the lower solids holdup, and thus lower catalyst concentration, of the Hairy Foam and Solid Foam packings. Therefore, larger reactors are required for the hairy foam and solid foam packings, resulting in a higher total pressure drop. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100128k [article] Comparative modeling study on the performance of solid foam as a structured catalyst support in multiphase reactors [texte imprimé] / Patrick W. A. M. Wenmakers, Auteur ; John Van Der Schaaf, Auteur ; Ben F. M. Kuster, Auteur . - 2010 . - pp. 5353–5366.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 11 (Juin 2010) . - pp. 5353–5366
Mots-clés : Catalyst Multiphase Reactors Résumé : In this paper, the performance of two types of advanced foam packings (viz., Hairy Foam and washcoated Solid Foam) is compared with that of a packed bed of porous spherical particles. The comparison is done for two different types of reactions (viz., the slow hydrogenation of cinnamaldehyde and the fast hydrogenation of 3-methyl-1-pentyn-3-ol) and under two flow conditions (viz., upflow and downflow), in terms of selectivity, conversion, pressure drop, and reactor height. Under similar operating conditions, the simulation results show that, for both reactions, the Hairy Foam and Solid Foam packings reach higher selectivities and conversions than the packed bed of particles. However, in the case of the slow reaction, the pressure drop for the Hairy and Solid Foam packings is significantly larger than that for the bed of particles. This is due to the lower solids holdup, and thus lower catalyst concentration, of the Hairy Foam and Solid Foam packings. Therefore, larger reactors are required for the hairy foam and solid foam packings, resulting in a higher total pressure drop. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100128k Liquid — solid mass transfer and reaction in a rotor — stator spinning disc reactor / Meeuwse, Marco in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10751-10757
Titre : Liquid — solid mass transfer and reaction in a rotor — stator spinning disc reactor Type de document : texte imprimé Auteurs : Meeuwse, Marco, Auteur ; Sanne Lempers, Auteur ; John Van Der Schaaf, Auteur Année de publication : 2011 Article en page(s) : pp. 10751-10757 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Reactor Stator Rotor Mass transfer Résumé : The heterogeneously catalyzed oxidation of glucose is performed in a rotor-stator spinning disk reactor. One side of the rotor is coated with a Pt/C and Nafion catalytic layer, resulting in a liquid-solid interfacial area of 274 mi2 mR3. At the lowest rotational disk speed, 26 rad s―1, the reaction is liquid-solid mass transfer limited; at the highest rotational disk speed, 180 rad s―1, the intrinsic kinetics are rate determining. The experimental overall reaction rates are fitted with a resistances in series model, with the activation energy, pre-exponential factor, and volumetric liquid-solid mass transfer coefficient as parameters. The volumetric liquid―solid mass transfer coefficient, kLSαLS, increases from 0.02 to 0.22 mL3 mR―3 s―1 for a rotational disk speed of 26 to 157 rad s '. These values are high in comparison to conventional reactors, like packed beds, in spite of the low liquid-solid interfacial area used in this study. The values of the liquid—solid mass transfer coefficient kLS are 1 order of magnitude higher compared to values reported for packed beds. The Sherwood number for the liquid-solid mass transfer in the rotor―stator spinning disk reactor depends on the Reynolds number to the power 2 in the range I x 105 < Re < 7 x 105. In this range, the transition of laminar flow to turbulent flow takes place, resulting in a change of the mass transfer mechanism. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447968 [article] Liquid — solid mass transfer and reaction in a rotor — stator spinning disc reactor [texte imprimé] / Meeuwse, Marco, Auteur ; Sanne Lempers, Auteur ; John Van Der Schaaf, Auteur . - 2011 . - pp. 10751-10757.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10751-10757
Mots-clés : Reactor Stator Rotor Mass transfer Résumé : The heterogeneously catalyzed oxidation of glucose is performed in a rotor-stator spinning disk reactor. One side of the rotor is coated with a Pt/C and Nafion catalytic layer, resulting in a liquid-solid interfacial area of 274 mi2 mR3. At the lowest rotational disk speed, 26 rad s―1, the reaction is liquid-solid mass transfer limited; at the highest rotational disk speed, 180 rad s―1, the intrinsic kinetics are rate determining. The experimental overall reaction rates are fitted with a resistances in series model, with the activation energy, pre-exponential factor, and volumetric liquid-solid mass transfer coefficient as parameters. The volumetric liquid―solid mass transfer coefficient, kLSαLS, increases from 0.02 to 0.22 mL3 mR―3 s―1 for a rotational disk speed of 26 to 157 rad s '. These values are high in comparison to conventional reactors, like packed beds, in spite of the low liquid-solid interfacial area used in this study. The values of the liquid—solid mass transfer coefficient kLS are 1 order of magnitude higher compared to values reported for packed beds. The Sherwood number for the liquid-solid mass transfer in the rotor―stator spinning disk reactor depends on the Reynolds number to the power 2 in the range I x 105 < Re < 7 x 105. In this range, the transition of laminar flow to turbulent flow takes place, resulting in a change of the mass transfer mechanism. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447968 Mass transfer in a rotor−stator spinning disk reactor with cofeeding of gas and liquid / Meeuwse, Marco in Industrial & engineering chemistry research, Vol. 49 N° 4 (Fevrier 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 4 (Fevrier 2010) . - pp 1605–1610
Titre : Mass transfer in a rotor−stator spinning disk reactor with cofeeding of gas and liquid Type de document : texte imprimé Auteurs : Meeuwse, Marco, Auteur ; John Van Der Schaaf, Auteur ; Schouten, Jaap C., Auteur Année de publication : 2010 Article en page(s) : pp 1605–1610 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Mass transfer Gas liquid. Résumé : This paper presents a new type of spinning disk reactor configuration for gas−liquid operations. It combines the features of a classical spinning disk with a liquid film on the rotor [e.g., Aoune, A.; Ramshaw, C. Int. J. Heat Mass Transfer 1999, 42, 2543−2556] and those of a rotor−stator spinning disk unit with a single gas inlet in the bottom stator [Meeuwse, M.; van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Sci. 2010, 65 (1), 466−471]. In this new configuration, gas and liquid are cofed through an inlet in the top stator. It is shown that gas−liquid mass transfer mainly takes place in the dispersed region between the rotor and the bottom stator. kGLaGLVR in this region is up to a factor of 6 larger than in the region with the liquid film on the rotor. Simulation of gas desorption from a saturated liquid shows that the gas−liquid mass transfer in this cofed configuration is considerably improved in comparison to the separate reactors, at similar operating conditions. The new reactor has also a higher potential for scaling up: gas and liquid can be cofed from one rotor−stator unit to another without the need for redistribution of the gas. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901301m [article] Mass transfer in a rotor−stator spinning disk reactor with cofeeding of gas and liquid [texte imprimé] / Meeuwse, Marco, Auteur ; John Van Der Schaaf, Auteur ; Schouten, Jaap C., Auteur . - 2010 . - pp 1605–1610.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 4 (Fevrier 2010) . - pp 1605–1610
Mots-clés : Mass transfer Gas liquid. Résumé : This paper presents a new type of spinning disk reactor configuration for gas−liquid operations. It combines the features of a classical spinning disk with a liquid film on the rotor [e.g., Aoune, A.; Ramshaw, C. Int. J. Heat Mass Transfer 1999, 42, 2543−2556] and those of a rotor−stator spinning disk unit with a single gas inlet in the bottom stator [Meeuwse, M.; van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Sci. 2010, 65 (1), 466−471]. In this new configuration, gas and liquid are cofed through an inlet in the top stator. It is shown that gas−liquid mass transfer mainly takes place in the dispersed region between the rotor and the bottom stator. kGLaGLVR in this region is up to a factor of 6 larger than in the region with the liquid film on the rotor. Simulation of gas desorption from a saturated liquid shows that the gas−liquid mass transfer in this cofed configuration is considerably improved in comparison to the separate reactors, at similar operating conditions. The new reactor has also a higher potential for scaling up: gas and liquid can be cofed from one rotor−stator unit to another without the need for redistribution of the gas. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901301m