Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Hyung Ju Lee
Documents disponibles écrits par cet auteur
Affiner la rechercheCharacterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor / Kyu Tae Kim in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 4 (Avril 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 4 (Avril 2010) . - 08 p.
Titre : Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor Type de document : texte imprimé Auteurs : Kyu Tae Kim, Auteur ; Jong Guen Lee, Auteur ; Hyung Ju Lee, Auteur Année de publication : 2010 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Chemiluminescence Combustion Flames Gas turbines Heat transfer Swirling flow Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Flame transfer function measurements of turbulent premixed flames are made in a model lean-premixed, swirl-stabilized, gas turbine combustor. OH*, CH*, and CO2* chemiluminescence emissions are measured to determine heat release oscillation from a whole flame, and the two-microphone technique is used to measure inlet velocity fluctuation. 2D CH* chemiluminescence imaging is used to characterize the flame shape: the flame length (LCH* max) and flame angle (alpha). Using H2-natural gas composite fuels, XH2=0.00–0.60, a very short flame is obtained and hydrogen enrichment of natural gas is found to have a significant impact on the flame structure and flame attachment points. For a pure natural gas flame, the flames exhibit a “V” structure, whereas H2-enriched natural gas flames have an “M” structure. Results show that the gain of M flames is much smaller than that of V flames. Similar to results of analytic and experimental investigations on the flame transfer function of laminar premixed flames, it shows that the dynamics of a turbulent premixed flame is governed by three relevant parameters: the Strouhal number (St=LCH* max/Lconv), the flame length (LCH* max), and the flame angle (alpha). Two flames with the same flame shape exhibit very similar forced responses, regardless of their inlet flow conditions. This is significant because the forced flame response of a highly turbulent, practical gas turbine combustor can be quantitatively generalized using the nondimensional parameters, which collapse all relevant input conditions into the flame shape and the Strouhal number. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000004 [...] [article] Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor [texte imprimé] / Kyu Tae Kim, Auteur ; Jong Guen Lee, Auteur ; Hyung Ju Lee, Auteur . - 2010 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 4 (Avril 2010) . - 08 p.
Mots-clés : Chemiluminescence Combustion Flames Gas turbines Heat transfer Swirling flow Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Flame transfer function measurements of turbulent premixed flames are made in a model lean-premixed, swirl-stabilized, gas turbine combustor. OH*, CH*, and CO2* chemiluminescence emissions are measured to determine heat release oscillation from a whole flame, and the two-microphone technique is used to measure inlet velocity fluctuation. 2D CH* chemiluminescence imaging is used to characterize the flame shape: the flame length (LCH* max) and flame angle (alpha). Using H2-natural gas composite fuels, XH2=0.00–0.60, a very short flame is obtained and hydrogen enrichment of natural gas is found to have a significant impact on the flame structure and flame attachment points. For a pure natural gas flame, the flames exhibit a “V” structure, whereas H2-enriched natural gas flames have an “M” structure. Results show that the gain of M flames is much smaller than that of V flames. Similar to results of analytic and experimental investigations on the flame transfer function of laminar premixed flames, it shows that the dynamics of a turbulent premixed flame is governed by three relevant parameters: the Strouhal number (St=LCH* max/Lconv), the flame length (LCH* max), and the flame angle (alpha). Two flames with the same flame shape exhibit very similar forced responses, regardless of their inlet flow conditions. This is significant because the forced flame response of a highly turbulent, practical gas turbine combustor can be quantitatively generalized using the nondimensional parameters, which collapse all relevant input conditions into the flame shape and the Strouhal number. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000004 [...] Thermal decomposition of waste linear alkylbenzene sulfonate / Hyung Ju Lee in Industrial & engineering chemistry research, Vol. 47 n°21 (Novembre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 n°21 (Novembre 2008) . - p. 8412–8415
Titre : Thermal decomposition of waste linear alkylbenzene sulfonate Type de document : texte imprimé Auteurs : Hyung Ju Lee, Auteur ; Kyun Young Park, Auteur ; Monn surk-silk, Auteur Année de publication : 2008 Article en page(s) : p. 8412–8415 Note générale : chemical engineering Langues : Anglais (eng) Mots-clés : thermal decompositionlinear alkylbenzene Résumé : A thermal decomposition is proposed to convert a waste linear alkylbenzene sulfonate (LAS) into a solid material that is environmentally more favorable and disposable at a lower cost. The waste LAS is a viscous liquid containing sulfur as high as 13.3 wt %. The waste LAS was heated in a nitrogen atmosphere at 200−300 °C for 1−4 h. The thermal treatment at 250 °C for 2 h decomposed the waste into vapors and a solid material or residue, 2.0 wt % in sulfur content. The vapors were cooled with water to form two condensate layers in the receiving cylinder. The upper layer was identified to be a linear alkylbenzene (LAB) and the lower one a mixture of water and organic sulfur oxy compounds. The uncondensed vapor that left the condenser was determined to be a mixture of SO2, SO3, and H2SO4. A material balance shows that the mass of the waste LAS charged was distributed in the decomposition products as follows: the solid residue, 65.3%; the LAB, 5.6%; the mixture of water and organic sulfur compounds, 5.6%; the mixture of SO2, SO3, and H2SO4, 21.5%; unidentifiable loss, 2.0%. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800382n [article] Thermal decomposition of waste linear alkylbenzene sulfonate [texte imprimé] / Hyung Ju Lee, Auteur ; Kyun Young Park, Auteur ; Monn surk-silk, Auteur . - 2008 . - p. 8412–8415.
chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°21 (Novembre 2008) . - p. 8412–8415
Mots-clés : thermal decompositionlinear alkylbenzene Résumé : A thermal decomposition is proposed to convert a waste linear alkylbenzene sulfonate (LAS) into a solid material that is environmentally more favorable and disposable at a lower cost. The waste LAS is a viscous liquid containing sulfur as high as 13.3 wt %. The waste LAS was heated in a nitrogen atmosphere at 200−300 °C for 1−4 h. The thermal treatment at 250 °C for 2 h decomposed the waste into vapors and a solid material or residue, 2.0 wt % in sulfur content. The vapors were cooled with water to form two condensate layers in the receiving cylinder. The upper layer was identified to be a linear alkylbenzene (LAB) and the lower one a mixture of water and organic sulfur oxy compounds. The uncondensed vapor that left the condenser was determined to be a mixture of SO2, SO3, and H2SO4. A material balance shows that the mass of the waste LAS charged was distributed in the decomposition products as follows: the solid residue, 65.3%; the LAB, 5.6%; the mixture of water and organic sulfur compounds, 5.6%; the mixture of SO2, SO3, and H2SO4, 21.5%; unidentifiable loss, 2.0%. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800382n