Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Shailendra Sinha
Documents disponibles écrits par cet auteur
Affiner la rechercheExperimental investigation of the effect of biodiesel utilization on lubricating oil degradation and wear of a transportation CIDI engine / Shailendra Sinha in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 4 (Avril 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 4 (Avril 2010) . - 09 p.
Titre : Experimental investigation of the effect of biodiesel utilization on lubricating oil degradation and wear of a transportation CIDI engine Type de document : texte imprimé Auteurs : Shailendra Sinha, Auteur ; Avinash Kumar Agarwal, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Biofuel Engine cylinders Internal combustion engines Lubricating oils Scanning electron microscopy Wear Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the present experimental research work, rice-bran oil methyl ester (ROME) is derived through transesterification of rice-bran oil using methanol in the presence of sodium hydroxide catalyst. On the basis of previous research for performance, emission, and combustion characteristics, a 20% (v/v) blend of ROME (B20) was selected as optimum biodiesel blend. This experimental investigation was aimed to investigate the effect of biodiesel on wear of in-cylinder engine components. Endurance tests were conducted on a medium duty direct injection transportation diesel engine with B20. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel (B00) and engine fueled with B20. After completion of these tests, engines were dismantled for observing the physical condition of various vital engine parts, e.g., piston rings, bearings, cylinder liner, and cylinder head. Physical measurements of these vital parts were also carried out to assess the wear of these parts. The physical wear of various parts except big end bearings (connecting rod bearing bore) were found to be lower in the case of B20 fueled engine. Wear metals in the lubricating oil samples drawn from the engines at regular intervals were investigated. Relatively lower wear concentrations of all wear metals except lead were found in the lubricating oil of B20 fueled engine. To quantify the wear of cylinder liners, surface parameters at different locations in the liner (top dead center, bottom dead center, and midstroke) were measured and compared. A qualitative analysis was also carried out by conducting surface profiles and scanning electron microscopy at the same locations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000004 [...] [article] Experimental investigation of the effect of biodiesel utilization on lubricating oil degradation and wear of a transportation CIDI engine [texte imprimé] / Shailendra Sinha, Auteur ; Avinash Kumar Agarwal, Auteur . - 2010 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 4 (Avril 2010) . - 09 p.
Mots-clés : Biofuel Engine cylinders Internal combustion engines Lubricating oils Scanning electron microscopy Wear Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the present experimental research work, rice-bran oil methyl ester (ROME) is derived through transesterification of rice-bran oil using methanol in the presence of sodium hydroxide catalyst. On the basis of previous research for performance, emission, and combustion characteristics, a 20% (v/v) blend of ROME (B20) was selected as optimum biodiesel blend. This experimental investigation was aimed to investigate the effect of biodiesel on wear of in-cylinder engine components. Endurance tests were conducted on a medium duty direct injection transportation diesel engine with B20. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel (B00) and engine fueled with B20. After completion of these tests, engines were dismantled for observing the physical condition of various vital engine parts, e.g., piston rings, bearings, cylinder liner, and cylinder head. Physical measurements of these vital parts were also carried out to assess the wear of these parts. The physical wear of various parts except big end bearings (connecting rod bearing bore) were found to be lower in the case of B20 fueled engine. Wear metals in the lubricating oil samples drawn from the engines at regular intervals were investigated. Relatively lower wear concentrations of all wear metals except lead were found in the lubricating oil of B20 fueled engine. To quantify the wear of cylinder liners, surface parameters at different locations in the liner (top dead center, bottom dead center, and midstroke) were measured and compared. A qualitative analysis was also carried out by conducting surface profiles and scanning electron microscopy at the same locations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000004 [...]