Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Anthony Le Negrate
Documents disponibles écrits par cet auteur
Affiner la rechercheKinetic study of the thermo-oxidative degradation of squalane (C30H62) modeling the base oil of engine lubricants / Moussa Diaby in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 3 (Mars 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 3 (Mars 2010) . - 09 p.
Titre : Kinetic study of the thermo-oxidative degradation of squalane (C30H62) modeling the base oil of engine lubricants Type de document : texte imprimé Auteurs : Moussa Diaby, Auteur ; Michel Sablier, Auteur ; Anthony Le Negrate, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Ageing Diesel engines Lubricating oils Lubrication Oxidation Pistons Rapid thermal processing Reaction rate constants Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : On the basis of ongoing research conducted on the clarification of processes responsible for lubricant degradation in the environment of piston grooves in exhaust gas recirculation (EGR) diesel engines, an experimental investigation was aimed to develop a kinetic model, which can be used for the prediction of lubricant oxidative degradation correlated with endurance test conducted on engines. Knowing that base oils are a complex blend of paraffins and naphthenes with a wide range of sizes and structures, their chemistry analysis during the oxidation process can be highly convoluted. In the present work, investigations were carried out with the squalane (C30H62) chosen for its physical and chemical similarities with the lubricant base oils used during the investigations. Thermo-oxidative degradation of this hydrocarbon was conducted at atmospheric pressure in a tubular furnace, while varying temperature and duration of the tests in order to establish an oxidation reaction rate law. The same experimental procedures were applied to squalane doped with two different phenolic antioxidants usually present in engine oil composition: 2,6-di-tert-butyl-4-methylphenol and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate. Thus, the effect of both antioxidants on the oxidation rate law was investigated. Data analysis of the oxidized samples (Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry) allowed rationalization of the thermo-oxidative degradation of squalane. The resulting kinetic modeling provides a practical analytical tool to follow the thermal degradation processes, which can be used for prediction of base oil hydrocarbon aging. If experiments confirmed the role of phenolic additives as an effective agent to lower oxidation rates, the main results lie in the observation of a threshold temperature where a reversed activity of these additives was observed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000003 [...] [article] Kinetic study of the thermo-oxidative degradation of squalane (C30H62) modeling the base oil of engine lubricants [texte imprimé] / Moussa Diaby, Auteur ; Michel Sablier, Auteur ; Anthony Le Negrate, Auteur . - 2010 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 3 (Mars 2010) . - 09 p.
Mots-clés : Ageing Diesel engines Lubricating oils Lubrication Oxidation Pistons Rapid thermal processing Reaction rate constants Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : On the basis of ongoing research conducted on the clarification of processes responsible for lubricant degradation in the environment of piston grooves in exhaust gas recirculation (EGR) diesel engines, an experimental investigation was aimed to develop a kinetic model, which can be used for the prediction of lubricant oxidative degradation correlated with endurance test conducted on engines. Knowing that base oils are a complex blend of paraffins and naphthenes with a wide range of sizes and structures, their chemistry analysis during the oxidation process can be highly convoluted. In the present work, investigations were carried out with the squalane (C30H62) chosen for its physical and chemical similarities with the lubricant base oils used during the investigations. Thermo-oxidative degradation of this hydrocarbon was conducted at atmospheric pressure in a tubular furnace, while varying temperature and duration of the tests in order to establish an oxidation reaction rate law. The same experimental procedures were applied to squalane doped with two different phenolic antioxidants usually present in engine oil composition: 2,6-di-tert-butyl-4-methylphenol and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate. Thus, the effect of both antioxidants on the oxidation rate law was investigated. Data analysis of the oxidized samples (Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry) allowed rationalization of the thermo-oxidative degradation of squalane. The resulting kinetic modeling provides a practical analytical tool to follow the thermal degradation processes, which can be used for prediction of base oil hydrocarbon aging. If experiments confirmed the role of phenolic additives as an effective agent to lower oxidation rates, the main results lie in the observation of a threshold temperature where a reversed activity of these additives was observed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000003 [...]