Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Daesik Kim
Documents disponibles écrits par cet auteur
Affiner la rechercheEffect of flame structure on the flame transfer function in a premixed gas turbine combustor / Daesik Kim in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 2 (Fevrier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 07 p.
Titre : Effect of flame structure on the flame transfer function in a premixed gas turbine combustor Type de document : texte imprimé Auteurs : Daesik Kim, Auteur ; Jong Guen Lee, Auteur ; Bryan D. Quay, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Gas turbines Transfer functions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The flame transfer function in a premixed gas turbine combustor is experimentally determined. The fuel (natural gas) is premixed with air upstream of a choked inlet to the combustor. Therefore, the input to the flame transfer function is the imposed velocity fluctuations of the fuel/air mixture without equivalence ratio fluctuations. The inlet-velocity fluctuations are achieved by a variable-speed siren over the forcing frequency of 75–280 Hz and measured using a hot-wire anemometer at the inlet to the combustor. The output function (heat release) is determined using chemiluminescence measurement from the whole flame. Flame images are recorded to understand how the flame structure plays a role in the global heat release response of flame to the inlet-velocity perturbation. The results show that the gain and phase of the flame transfer function depend on flame structure as well as the frequency and magnitude of inlet-velocity modulation and can be generalized in terms of the relative length scale of flame to convection length scale of inlet-velocity perturbation, which is represented by a Strouhal number. Nonlinear flame response is characterized by a periodic vortex shedding from shear layer, and the nonlinearity occurs at lower magnitude of inlet-velocity fluctuation as the modulation frequency increases. However, for a given modulation frequency, the flame structure does not affect the magnitude of inlet-velocity fluctuation at which the nonlinear flame response starts to appear. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] [article] Effect of flame structure on the flame transfer function in a premixed gas turbine combustor [texte imprimé] / Daesik Kim, Auteur ; Jong Guen Lee, Auteur ; Bryan D. Quay, Auteur . - 2010 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 07 p.
Mots-clés : Combustion Gas turbines Transfer functions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The flame transfer function in a premixed gas turbine combustor is experimentally determined. The fuel (natural gas) is premixed with air upstream of a choked inlet to the combustor. Therefore, the input to the flame transfer function is the imposed velocity fluctuations of the fuel/air mixture without equivalence ratio fluctuations. The inlet-velocity fluctuations are achieved by a variable-speed siren over the forcing frequency of 75–280 Hz and measured using a hot-wire anemometer at the inlet to the combustor. The output function (heat release) is determined using chemiluminescence measurement from the whole flame. Flame images are recorded to understand how the flame structure plays a role in the global heat release response of flame to the inlet-velocity perturbation. The results show that the gain and phase of the flame transfer function depend on flame structure as well as the frequency and magnitude of inlet-velocity modulation and can be generalized in terms of the relative length scale of flame to convection length scale of inlet-velocity perturbation, which is represented by a Strouhal number. Nonlinear flame response is characterized by a periodic vortex shedding from shear layer, and the nonlinearity occurs at lower magnitude of inlet-velocity fluctuation as the modulation frequency increases. However, for a given modulation frequency, the flame structure does not affect the magnitude of inlet-velocity fluctuation at which the nonlinear flame response starts to appear. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...]