Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Matteo Pascenti
Documents disponibles écrits par cet auteur
Affiner la rechercheA micro gas turbine based test rig for educational purposes / Mario L. Ferrari in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 2 (Fevrier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 05 p.
Titre : A micro gas turbine based test rig for educational purposes Type de document : texte imprimé Auteurs : Mario L. Ferrari, Auteur ; Matteo Pascenti, Auteur ; Loredana Magistri, Auteur Année de publication : 2010 Article en page(s) : 05 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Cogeneration Compressors Educational courses Flow control Gas turbines Power engineering education Power grids Student experiments Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The Thermochemical Power Group of the University of Genoa, Italy, has developed a new “Gas Turbine” laboratory to introduce undergraduate students to the Gas Turbines and Innovative Cycles course, and Ph.D.s to advanced experimental activities in the same field. In the laboratory a general-purpose experimental rig, based on a modified commercial 100 kW recuperated micro gas turbine, was installed and fully instrumented. One of the main objectives of the laboratory is to provide both students and researchers with several experimental possibilities to obtain data related to the gas turbine steady-state, transient, and dynamic performance, including the effect of interaction between the turbomachines (especially the compressor), and more complex innovative gas turbine cycle configurations, such as recuperated, humid air, and hybrid (with high temperature fuel cells). The facility was partially funded by two Integrated Projects of the EU VI Framework Program (Felicitas and LARGE-SOFC) and the Italian Government (PRIN project), and it was designed with a high flexibility approach including: flow control management, cogenerative and trigenerative applications, downstream compressor volume variation, grid-connected or stand-alone operations, recuperated or simple cycles, and room temperature control. The paper also shows, as an example of the possibilities offered by the rig, experimental data obtained by both Master and Ph.D. students. The tests presented here are essential for understanding commercial gas turbines and microturbine performance, control strategy development, and theoretical model validation. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] [article] A micro gas turbine based test rig for educational purposes [texte imprimé] / Mario L. Ferrari, Auteur ; Matteo Pascenti, Auteur ; Loredana Magistri, Auteur . - 2010 . - 05 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 05 p.
Mots-clés : Cogeneration Compressors Educational courses Flow control Gas turbines Power engineering education Power grids Student experiments Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The Thermochemical Power Group of the University of Genoa, Italy, has developed a new “Gas Turbine” laboratory to introduce undergraduate students to the Gas Turbines and Innovative Cycles course, and Ph.D.s to advanced experimental activities in the same field. In the laboratory a general-purpose experimental rig, based on a modified commercial 100 kW recuperated micro gas turbine, was installed and fully instrumented. One of the main objectives of the laboratory is to provide both students and researchers with several experimental possibilities to obtain data related to the gas turbine steady-state, transient, and dynamic performance, including the effect of interaction between the turbomachines (especially the compressor), and more complex innovative gas turbine cycle configurations, such as recuperated, humid air, and hybrid (with high temperature fuel cells). The facility was partially funded by two Integrated Projects of the EU VI Framework Program (Felicitas and LARGE-SOFC) and the Italian Government (PRIN project), and it was designed with a high flexibility approach including: flow control management, cogenerative and trigenerative applications, downstream compressor volume variation, grid-connected or stand-alone operations, recuperated or simple cycles, and room temperature control. The paper also shows, as an example of the possibilities offered by the rig, experimental data obtained by both Master and Ph.D. students. The tests presented here are essential for understanding commercial gas turbines and microturbine performance, control strategy development, and theoretical model validation. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] Micro gas turbine recuperator / Mario L. Ferrari in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 2 (Fevrier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 08 p.
Titre : Micro gas turbine recuperator : steady-state and transient experimental investigation Type de document : texte imprimé Auteurs : Mario L. Ferrari, Auteur ; Matteo Pascenti, Auteur ; Loredana Magistri, Auteur Année de publication : 2010 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Gas turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The aim of this work is the experimental analysis of a primary-surface recuperator, operating in a 100 kW micro gas turbine, as in a standard recuperated cycle. These tests, performed in both steady-state and transient conditions, have been carried out using the micro gas turbine test rig, developed by the Thermochemical Power Group at the University of Genova, Italy. Even if this facility has mainly been designed for hybrid system emulations, it is possible to exploit the plant for component tests, such as experimental studies on recuperators. The valves installed in the rig make it possible to operate the plant in the standard recuperated configuration, and the facility has been equipped with new probes essential for this kind of tests. A wide-ranging analysis of the recuperator performance has been carried out with the machine, operating in stand-alone configuration, or connected to the electrical grid, to test different control strategy influences. Particular attention has been given to tests performed at different electrical load values and with different mass flow rates through the recuperator ducts. The final section of this paper reports the transient analysis carried out on this recuperator. The attention is mainly focused on thermal transient performance of the component, showing the effects of both temperature and flow steps. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] [article] Micro gas turbine recuperator : steady-state and transient experimental investigation [texte imprimé] / Mario L. Ferrari, Auteur ; Matteo Pascenti, Auteur ; Loredana Magistri, Auteur . - 2010 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 08 p.
Mots-clés : Gas turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The aim of this work is the experimental analysis of a primary-surface recuperator, operating in a 100 kW micro gas turbine, as in a standard recuperated cycle. These tests, performed in both steady-state and transient conditions, have been carried out using the micro gas turbine test rig, developed by the Thermochemical Power Group at the University of Genova, Italy. Even if this facility has mainly been designed for hybrid system emulations, it is possible to exploit the plant for component tests, such as experimental studies on recuperators. The valves installed in the rig make it possible to operate the plant in the standard recuperated configuration, and the facility has been equipped with new probes essential for this kind of tests. A wide-ranging analysis of the recuperator performance has been carried out with the machine, operating in stand-alone configuration, or connected to the electrical grid, to test different control strategy influences. Particular attention has been given to tests performed at different electrical load values and with different mass flow rates through the recuperator ducts. The final section of this paper reports the transient analysis carried out on this recuperator. The attention is mainly focused on thermal transient performance of the component, showing the effects of both temperature and flow steps. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...]