[article]
Titre : |
A convective mass transfer model for predicting vapor formation within the cooling system of an internal combustion engine after shutdown |
Type de document : |
texte imprimé |
Auteurs : |
Rocco Piccione, Auteur ; Antonio Vulcano, Auteur ; Sergio Bova, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
10 p. |
Note générale : |
Génie Mécanique |
Langues : |
Anglais (eng) |
Mots-clés : |
Automotive components Cooling Internal combustion engines Mass transfer Pumps Shafts Thermodynamics |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
In the usual liquid cooling system of an internal combustion engine a centrifugal pump is driven by the crankshaft and imposes a coolant flow, which transfers heat from the engine walls to the radiator. Therefore, as the engine is switched-off, the coolant flow also stops, while metal temperature may be particularly high after a period of high load operation; coolant vaporization in the cylinder head passages may occur in these conditions, with a pressure increase inside the cooling circuit. A numerical dynamic model was developed to predict this phenomenon, often called after-boiling among engine manufacturers. The model structure includes thermodynamic equations to compute heat transfer as well as mass transfer equations to determine the vaporized mass of the coolant, which occurs in cylinder head passages and the vapor condensation within the radiator. The developed mathematical model was validated against test data carried out on a production four-stroke spark-ignition engine, and simulation results show good agreement with experimental data. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] |
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 10 p.
[article] A convective mass transfer model for predicting vapor formation within the cooling system of an internal combustion engine after shutdown [texte imprimé] / Rocco Piccione, Auteur ; Antonio Vulcano, Auteur ; Sergio Bova, Auteur . - 2010 . - 10 p. Génie Mécanique Langues : Anglais ( eng) in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 10 p.
Mots-clés : |
Automotive components Cooling Internal combustion engines Mass transfer Pumps Shafts Thermodynamics |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
In the usual liquid cooling system of an internal combustion engine a centrifugal pump is driven by the crankshaft and imposes a coolant flow, which transfers heat from the engine walls to the radiator. Therefore, as the engine is switched-off, the coolant flow also stops, while metal temperature may be particularly high after a period of high load operation; coolant vaporization in the cylinder head passages may occur in these conditions, with a pressure increase inside the cooling circuit. A numerical dynamic model was developed to predict this phenomenon, often called after-boiling among engine manufacturers. The model structure includes thermodynamic equations to compute heat transfer as well as mass transfer equations to determine the vaporized mass of the coolant, which occurs in cylinder head passages and the vapor condensation within the radiator. The developed mathematical model was validated against test data carried out on a production four-stroke spark-ignition engine, and simulation results show good agreement with experimental data. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] |
|