[article] inActa materialia > Vol. 58 N° 8 (Mai 2010) . - pp. 2887–2897
Titre : |
Hafnium binary alloys from experiments and first principles |
Type de document : |
texte imprimé |
Auteurs : |
Ohad Levy, Auteur ; Gus L.W. Hart, Auteur ; Stefano Curtarolo, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
pp. 2887–2897 |
Note générale : |
Métallurgie |
Langues : |
Anglais (eng) |
Mots-clés : |
Hafnium alloys High throughput Ab initio calculations |
Résumé : |
Despite the increasing importance of hafnium in numerous technological applications, experimental and computational data on its binary alloys is sparse. In particular, data is scant on those binary systems believed to be phase-separating. We performed a comprehensive study of hafnium binary systems with alkali metals, alkaline earths, transition metals and metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in six binary systems previously believed to be phase-separating. They also predict a few unreported compounds in additional systems and indicate that some reported compounds may actually be unstable at low temperatures. We report the results for the following systems: AgHf, AlHf, AuHf, BaHf★, BeHf, BiHf, CaHf★, CdHf, CoHf, CrHf, CuHf, FeHf, GaHf, HfHg, HfIn, HfIr, HfK★, HfLa★, HfLi★, HfMg, HfMn, HfMo,HfNa★, HfNb★, HfNi, HfOs, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSc, HfSn, HfSr★, HfTa★, HfTc, HfTi, HfTl, HfV★, HfW, HfY★, HfZn and HfZr (★ = systems in which the ab initio method predicts that no compounds are stable). |
DEWEY : |
669 |
ISSN : |
1359-6454 |
En ligne : |
http://www.sciencedirect.com/science/article/pii/S1359645410000315 |
[article] Hafnium binary alloys from experiments and first principles [texte imprimé] / Ohad Levy, Auteur ; Gus L.W. Hart, Auteur ; Stefano Curtarolo, Auteur . - 2011 . - pp. 2887–2897. Métallurgie Langues : Anglais ( eng) in Acta materialia > Vol. 58 N° 8 (Mai 2010) . - pp. 2887–2897
Mots-clés : |
Hafnium alloys High throughput Ab initio calculations |
Résumé : |
Despite the increasing importance of hafnium in numerous technological applications, experimental and computational data on its binary alloys is sparse. In particular, data is scant on those binary systems believed to be phase-separating. We performed a comprehensive study of hafnium binary systems with alkali metals, alkaline earths, transition metals and metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in six binary systems previously believed to be phase-separating. They also predict a few unreported compounds in additional systems and indicate that some reported compounds may actually be unstable at low temperatures. We report the results for the following systems: AgHf, AlHf, AuHf, BaHf★, BeHf, BiHf, CaHf★, CdHf, CoHf, CrHf, CuHf, FeHf, GaHf, HfHg, HfIn, HfIr, HfK★, HfLa★, HfLi★, HfMg, HfMn, HfMo,HfNa★, HfNb★, HfNi, HfOs, HfPb, HfPd, HfPt, HfRe, HfRh, HfRu, HfSc, HfSn, HfSr★, HfTa★, HfTc, HfTi, HfTl, HfV★, HfW, HfY★, HfZn and HfZr (★ = systems in which the ab initio method predicts that no compounds are stable). |
DEWEY : |
669 |
ISSN : |
1359-6454 |
En ligne : |
http://www.sciencedirect.com/science/article/pii/S1359645410000315 |
|