Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Y. Kaji
Documents disponibles écrits par cet auteur
Affiner la rechercheNanoscale contact plasticity of crystalline metal / T. Tsuru in Acta materialia, Vol. 58 N° 8 (Mai 2010)
[article]
in Acta materialia > Vol. 58 N° 8 (Mai 2010) . - pp. 3096–3102
Titre : Nanoscale contact plasticity of crystalline metal : Experiment and analytical investigation via atomistic and discrete dislocation models Type de document : texte imprimé Auteurs : T. Tsuru, Auteur ; Y. Shibutani, Auteur ; Y. Kaji, Auteur Année de publication : 2011 Article en page(s) : pp. 3096–3102 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Nanoplasticity Molecular statics Discrete dislocation mechanics Boundary element method Nanoindentation Résumé : Nanoscale incipient plastic deformation in crystalline metals occurs as the result of the collective motion of dislocations. It is known as “nanoplasticity” and is recognized as the elementary process of the macroscopic deformation. Abrupt increases in indent displacements called displacement bursts were observed in recent nanoindentation experiments; that is, the specific behavior for nanoplasticity. In the present study, experimental tests are first conducted to educe the unique nature of the nanoscale deformation. Subsequently, large-scale atomistic simulations are performed to predict the incipient plastic deformation and a new discrete dislocation model combined with the boundary element analysis is constructed to capture the collective motion of the dislocations. Our results suggest that the incipient plastic deformation requires much higher critical shear stress than the theoretical shear strength due to high compressive stress distribution beneath the indenter, and that the displacement burst is induced by surface rearrangement corresponding to hundreds of dislocation dipoles. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410000789 [article] Nanoscale contact plasticity of crystalline metal : Experiment and analytical investigation via atomistic and discrete dislocation models [texte imprimé] / T. Tsuru, Auteur ; Y. Shibutani, Auteur ; Y. Kaji, Auteur . - 2011 . - pp. 3096–3102.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 8 (Mai 2010) . - pp. 3096–3102
Mots-clés : Nanoplasticity Molecular statics Discrete dislocation mechanics Boundary element method Nanoindentation Résumé : Nanoscale incipient plastic deformation in crystalline metals occurs as the result of the collective motion of dislocations. It is known as “nanoplasticity” and is recognized as the elementary process of the macroscopic deformation. Abrupt increases in indent displacements called displacement bursts were observed in recent nanoindentation experiments; that is, the specific behavior for nanoplasticity. In the present study, experimental tests are first conducted to educe the unique nature of the nanoscale deformation. Subsequently, large-scale atomistic simulations are performed to predict the incipient plastic deformation and a new discrete dislocation model combined with the boundary element analysis is constructed to capture the collective motion of the dislocations. Our results suggest that the incipient plastic deformation requires much higher critical shear stress than the theoretical shear strength due to high compressive stress distribution beneath the indenter, and that the displacement burst is induced by surface rearrangement corresponding to hundreds of dislocation dipoles. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410000789