Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yasuyoshi Kato
Documents disponibles écrits par cet auteur
Affiner la rechercheAdvanced high temperature gas-cooled reactor systems / Yasuyoshi Kato in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 1 (Janvier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 1 (Janvier 2010) . - 07 p.
Titre : Advanced high temperature gas-cooled reactor systems Type de document : texte imprimé Auteurs : Yasuyoshi Kato, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Gas cooled reactors Gas turbine power stations Heat exchangers Heat transfer Microchannel flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Three systems have been proposed for advanced high-temperature gas-cooled reactors: a supercritical carbon dioxide (S-CO2) gas turbine power conversion system, a new microchannel heat exchanger (MCHE), and a once-through-then-out (OTTO) refueling scheme with burnable poison (BP) loading. A S-CO2 gas turbine cycle attains higher cycle efficiency than a He gas turbine cycle because of reduced compression work around the critical point of CO2. Considering temperature reduction at the turbine inlet by 30°C through intermediate heat exchange, the S-CO2 indirect cycle achieves an efficiency of 53.8% at a turbine inlet temperature of 820°C and a turbine inlet pressure of 20 MPa. This cycle efficiency value is higher by 4.5% than that (49.3%) of a He direct cycle at a turbine inlet temperature of 850°C and 7 MPa. A new MCHE has been proposed as an intermediate heat exchanger between the primary cooling He loop and the secondary S-CO2 gas turbine power conversion system and as recuperators of the S-CO2 gas turbine power conversion system. This MCHE has discontinuous “S-shaped” fins providing flow channels resembling sine curves. Its pressure drop is one-sixth that of a conventional MCHE with a zigzag flow channel configuration, but it has the same high heat transfer performance. The pressure drop reduction is ascribed to suppression of recirculation flows and eddies that appear around bend corners of the zigzag flow channels in the conventional MCHE. An optimal BP loading in an OTTO refueling scheme eliminates the shortcoming of its excessively high axial power peaking factor, reducing the power peaking factor from 4.44 to about 1.7, and inheriting advantages over the multipass scheme because it obviates reloading in addition to fuel handling and integrity checking systems. Because of the power peaking factor reduction, the maximum fuel temperatures are lower than the maximum permissible values of 1250°C for normal operation and 1600°C during a depressurization accident. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000001 [...] [article] Advanced high temperature gas-cooled reactor systems [texte imprimé] / Yasuyoshi Kato, Auteur . - 2010 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 1 (Janvier 2010) . - 07 p.
Mots-clés : Gas cooled reactors Gas turbine power stations Heat exchangers Heat transfer Microchannel flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Three systems have been proposed for advanced high-temperature gas-cooled reactors: a supercritical carbon dioxide (S-CO2) gas turbine power conversion system, a new microchannel heat exchanger (MCHE), and a once-through-then-out (OTTO) refueling scheme with burnable poison (BP) loading. A S-CO2 gas turbine cycle attains higher cycle efficiency than a He gas turbine cycle because of reduced compression work around the critical point of CO2. Considering temperature reduction at the turbine inlet by 30°C through intermediate heat exchange, the S-CO2 indirect cycle achieves an efficiency of 53.8% at a turbine inlet temperature of 820°C and a turbine inlet pressure of 20 MPa. This cycle efficiency value is higher by 4.5% than that (49.3%) of a He direct cycle at a turbine inlet temperature of 850°C and 7 MPa. A new MCHE has been proposed as an intermediate heat exchanger between the primary cooling He loop and the secondary S-CO2 gas turbine power conversion system and as recuperators of the S-CO2 gas turbine power conversion system. This MCHE has discontinuous “S-shaped” fins providing flow channels resembling sine curves. Its pressure drop is one-sixth that of a conventional MCHE with a zigzag flow channel configuration, but it has the same high heat transfer performance. The pressure drop reduction is ascribed to suppression of recirculation flows and eddies that appear around bend corners of the zigzag flow channels in the conventional MCHE. An optimal BP loading in an OTTO refueling scheme eliminates the shortcoming of its excessively high axial power peaking factor, reducing the power peaking factor from 4.44 to about 1.7, and inheriting advantages over the multipass scheme because it obviates reloading in addition to fuel handling and integrity checking systems. Because of the power peaking factor reduction, the maximum fuel temperatures are lower than the maximum permissible values of 1250°C for normal operation and 1600°C during a depressurization accident. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000001 [...]