Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Frances Dawson
Documents disponibles écrits par cet auteur
Affiner la rechercheDevelopment of local heat transfer models for the safety assessment of high temperature gas-cooled reactor cores—Part II: prismatic modular reactors / Richard Stainsby in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 1 (Janvier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 1 (Janvier 2010) . - 08 p.
Titre : Development of local heat transfer models for the safety assessment of high temperature gas-cooled reactor cores—Part II: prismatic modular reactors Type de document : texte imprimé Auteurs : Richard Stainsby, Auteur ; Matthew Worsley, Auteur ; Frances Dawson, Auteur Année de publication : 2010 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Finite element analysis Gas cooled reactors Heat transfer Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper extends the work of Part I to be applicable to prismatic block fuel elements and presents a model developed for determining fuel compact and fuel block temperatures of a prismatic core modular reactor. The model is applicable both in normal operation and under fault conditions and is an extension of the multiscale modeling techniques presented in Part I. The new model has been qualified by comparison with finite element simulations for both steady-state and transient conditions. Furthermore, a model for determining the effective conductivity of the block fuel elements—important for heat removal in loss of flow conditions—is presented and, again, qualified by comparison with finite element simulations. A numerical model for predicting conduction heat transfer both within and between block fuel elements has been developed, which, when coupled with the above multiscale model, allows simulations of whole cores to be carried out, while retaining the ability to predict the temperatures of individual coolant channels and individual coated particles in the fuel if required. Note de contenu : Development of Local Heat Transfer Models for Safety Assessment of High Temperature Gas-Cooled Reactor Cores—Part I: Pebble Bed Reactors
Richard Stainsby et al.
J. Eng. Gas Turbines Power 132, 012906 (2010)DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000001 [...] [article] Development of local heat transfer models for the safety assessment of high temperature gas-cooled reactor cores—Part II: prismatic modular reactors [texte imprimé] / Richard Stainsby, Auteur ; Matthew Worsley, Auteur ; Frances Dawson, Auteur . - 2010 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 1 (Janvier 2010) . - 08 p.
Mots-clés : Finite element analysis Gas cooled reactors Heat transfer Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper extends the work of Part I to be applicable to prismatic block fuel elements and presents a model developed for determining fuel compact and fuel block temperatures of a prismatic core modular reactor. The model is applicable both in normal operation and under fault conditions and is an extension of the multiscale modeling techniques presented in Part I. The new model has been qualified by comparison with finite element simulations for both steady-state and transient conditions. Furthermore, a model for determining the effective conductivity of the block fuel elements—important for heat removal in loss of flow conditions—is presented and, again, qualified by comparison with finite element simulations. A numerical model for predicting conduction heat transfer both within and between block fuel elements has been developed, which, when coupled with the above multiscale model, allows simulations of whole cores to be carried out, while retaining the ability to predict the temperatures of individual coolant channels and individual coated particles in the fuel if required. Note de contenu : Development of Local Heat Transfer Models for Safety Assessment of High Temperature Gas-Cooled Reactor Cores—Part I: Pebble Bed Reactors
Richard Stainsby et al.
J. Eng. Gas Turbines Power 132, 012906 (2010)DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000001 [...]