Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Rongqiao Xu
Documents disponibles écrits par cet auteur
Affiner la rechercheCZM - based debonding simulation of cracked beams strengthened by FRP sheets / Rongqiao Xu in Journal of engineering mechanics, Vol. 138 N° 2 (Fevrier 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 2 (Fevrier 2012) . - pp.210-220
Titre : CZM - based debonding simulation of cracked beams strengthened by FRP sheets Type de document : texte imprimé Auteurs : Rongqiao Xu, Auteur ; Cheng Liu, Auteur Année de publication : 2012 Article en page(s) : pp.210-220 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Cracking Beams Fiber reinforced polymer Matrix methods Bonding Simulation Résumé : This paper uses the transfer matrix method (TMM) to analyze the interfacial behavior of a fiber-reinforced polymer (FRP)–plated beam with flexural cracks. The adhesive layer between the beam and the FRP sheet is simulated by the cohesive zone model (CZM) of a general interfacial bond-slip law. The flexural cracks are modeled by rotational springs whose rigidity is dependent on the relative depth of the cracks. The transfer matrix of the FRP-plated beam is then derived, and the joint coupling matrix (JCM) method is introduced to solve the stress resultants, displacements, interfacial shear stress, and axial force of the FRP sheet. Finally, some numerical examples are given, and the results are compared with the available analytical solutions to validate the present method. Note de contenu :
Article Outline
1. Introduction
2. Description of the Problem and Assumptions
3. State-Space Formula and Its Solution
4. Joint Coupling Matrix Method
5. Implementation of the Computing Procedure
6. Numerical Examples
7. ConclusionsISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v138/i2/p210_s1?isAuthorized=no [article] CZM - based debonding simulation of cracked beams strengthened by FRP sheets [texte imprimé] / Rongqiao Xu, Auteur ; Cheng Liu, Auteur . - 2012 . - pp.210-220.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 2 (Fevrier 2012) . - pp.210-220
Mots-clés : Cracking Beams Fiber reinforced polymer Matrix methods Bonding Simulation Résumé : This paper uses the transfer matrix method (TMM) to analyze the interfacial behavior of a fiber-reinforced polymer (FRP)–plated beam with flexural cracks. The adhesive layer between the beam and the FRP sheet is simulated by the cohesive zone model (CZM) of a general interfacial bond-slip law. The flexural cracks are modeled by rotational springs whose rigidity is dependent on the relative depth of the cracks. The transfer matrix of the FRP-plated beam is then derived, and the joint coupling matrix (JCM) method is introduced to solve the stress resultants, displacements, interfacial shear stress, and axial force of the FRP sheet. Finally, some numerical examples are given, and the results are compared with the available analytical solutions to validate the present method. Note de contenu :
Article Outline
1. Introduction
2. Description of the Problem and Assumptions
3. State-Space Formula and Its Solution
4. Joint Coupling Matrix Method
5. Implementation of the Computing Procedure
6. Numerical Examples
7. ConclusionsISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v138/i2/p210_s1?isAuthorized=no Variational principles of partial - interaction composite beams / Rongqiao Xu in Journal of engineering mechanics, Vol. 138 N° 5 (Mai 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 5 (Mai 2012) . - pp.542-551
Titre : Variational principles of partial - interaction composite beams Type de document : texte imprimé Auteurs : Rongqiao Xu, Auteur ; Dequan Chen, Auteur Année de publication : 2012 Article en page(s) : pp.542-551 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Composite beams Partial-interaction Variational theorem Résumé : This work presents the principle of virtual work and reciprocal theorem of partial-interaction composite beams. The principle of minimum potential energy is also obtained and proved along with the variational formulae for the frequency of free vibration and the critical load of buckling of partial-interaction composite beams. Approximate solutions for bending, vibration, and buckling are finally given to demonstrate their applications. It is shown that the deflections, resonant frequencies, and critical loads of buckling of composite beams under different boundary conditions can be readily obtained with enough accuracy by using these variational principles. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000364 [article] Variational principles of partial - interaction composite beams [texte imprimé] / Rongqiao Xu, Auteur ; Dequan Chen, Auteur . - 2012 . - pp.542-551.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 5 (Mai 2012) . - pp.542-551
Mots-clés : Composite beams Partial-interaction Variational theorem Résumé : This work presents the principle of virtual work and reciprocal theorem of partial-interaction composite beams. The principle of minimum potential energy is also obtained and proved along with the variational formulae for the frequency of free vibration and the critical load of buckling of partial-interaction composite beams. Approximate solutions for bending, vibration, and buckling are finally given to demonstrate their applications. It is shown that the deflections, resonant frequencies, and critical loads of buckling of composite beams under different boundary conditions can be readily obtained with enough accuracy by using these variational principles. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000364