Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Haihong Zhao
Documents disponibles écrits par cet auteur
Affiner la rechercheTheoretical models for wave energy dissipation caused by vegetation / Qin Chen in Journal of engineering mechanics, Vol. 138 N° 2 (Fevrier 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 2 (Fevrier 2012) . - pp.221-229
Titre : Theoretical models for wave energy dissipation caused by vegetation Type de document : texte imprimé Auteurs : Qin Chen, Auteur ; Haihong Zhao, Auteur Année de publication : 2012 Article en page(s) : pp.221-229 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Wave attenuation Wetlands Vegetation Random waves Spectral analysis Flow resistance Numerical analysis Energy dissipation Résumé : The paper presents theoretical and numerical analyses of random wave attenuation attributable to vegetation. Existing models based on Rayleigh distribution of wave heights are critically examined followed by the development of two new models for random waves over vegetation. The first model is derived on the basis of Hasselmann and Collins’ treatment of energy dissipation of random waves attributable to the bottom friction. The second model is derived on the basis of Longuet-Higgins’ probability density function for the joint distribution of wave heights and wave periods, which recovers to the model that uses the Rayleigh distribution of wave heights if the spectrum becomes narrow banded. Such a model allows for quantifying the effects of the spectral width on the model performances. Comparisons of the modeled and measured root-mean-square wave heights over vegetation show good agreement. Moreover, the Joint distribution-based model provides insight into the spectral distribution of the energy dissipation, which is different from other dissipation models that follow exactly the wave energy spectrum. Note de contenu :
Article Outline
1. Introduction
2. Methodology
1. Existing Models
1. Dalrymple-Based Approach
2. Rayleigh Distribution-Based Approach
2. New Models
1. Hasselmann and Collins-Based Approach
2. Joint Distribution-Based Approach
3. Model Testing
1. Comparison with Laboratory Data
2. Inter-Model Comparisons
4. Spectral Distribution of Energy Dissipation
1. Spectral Distribution of Sds,v(σ,θ)
2. Effects on Spectral Evolution
3. Discussion
5. Summary and ConclusionsISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v138/i2/p221_s1?isAuthorized=no [article] Theoretical models for wave energy dissipation caused by vegetation [texte imprimé] / Qin Chen, Auteur ; Haihong Zhao, Auteur . - 2012 . - pp.221-229.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 2 (Fevrier 2012) . - pp.221-229
Mots-clés : Wave attenuation Wetlands Vegetation Random waves Spectral analysis Flow resistance Numerical analysis Energy dissipation Résumé : The paper presents theoretical and numerical analyses of random wave attenuation attributable to vegetation. Existing models based on Rayleigh distribution of wave heights are critically examined followed by the development of two new models for random waves over vegetation. The first model is derived on the basis of Hasselmann and Collins’ treatment of energy dissipation of random waves attributable to the bottom friction. The second model is derived on the basis of Longuet-Higgins’ probability density function for the joint distribution of wave heights and wave periods, which recovers to the model that uses the Rayleigh distribution of wave heights if the spectrum becomes narrow banded. Such a model allows for quantifying the effects of the spectral width on the model performances. Comparisons of the modeled and measured root-mean-square wave heights over vegetation show good agreement. Moreover, the Joint distribution-based model provides insight into the spectral distribution of the energy dissipation, which is different from other dissipation models that follow exactly the wave energy spectrum. Note de contenu :
Article Outline
1. Introduction
2. Methodology
1. Existing Models
1. Dalrymple-Based Approach
2. Rayleigh Distribution-Based Approach
2. New Models
1. Hasselmann and Collins-Based Approach
2. Joint Distribution-Based Approach
3. Model Testing
1. Comparison with Laboratory Data
2. Inter-Model Comparisons
4. Spectral Distribution of Energy Dissipation
1. Spectral Distribution of Sds,v(σ,θ)
2. Effects on Spectral Evolution
3. Discussion
5. Summary and ConclusionsISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v138/i2/p221_s1?isAuthorized=no