Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Sayeed Nurul Ghani
Documents disponibles écrits par cet auteur
Affiner la rechercheCost optimum design of posttensioned I-girder bridge using global optimization algorithm / Raquib Ahsan in Journal of structural engineering, Vol. 138 N° 2 (Fevrier 2012)
[article]
in Journal of structural engineering > Vol. 138 N° 2 (Fevrier 2012) . - pp. 273-284
Titre : Cost optimum design of posttensioned I-girder bridge using global optimization algorithm Type de document : texte imprimé Auteurs : Raquib Ahsan, Auteur ; Shohel Rana, Auteur ; Sayeed Nurul Ghani, Auteur Année de publication : 2012 Article en page(s) : pp. 273-284 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Cost optimum design Prestressed concrete Post-tensioned girder bridge Constrained global optimization Résumé : This paper presents an optimization approach to the design of simply supported, post-tensioned, prestressed concrete I-girder bridges. The objective is to minimize the total cost of the structure, considering cost of materials, fabrication, and installation. For a particular girder span and bridge width, the design variables considered for cost minimization of the bridge system are girder spacing, various cross-sectional dimensions of the girder, number of strands per tendon, number of tendons, tendon layout and configuration, slab thickness, slab rebar, and shear rebar for the girder. Explicit constraints on the design variables are developed on the basis of geometric requirements, practical conditions for construction, and code restrictions. Implicit constraints for design are formulated as per the American Association of State Highway and Transportation Officials (AASHTO) Standard Specifications. The optimization problem is characterized by having a combination of continuous, discrete, and integer sets of design variables and multiple local minima. An optimization algorithm, evolutionary operation (EVOP), is used that is capable of locating directly with high probability the global minimum without requiring information on gradient or subgradient of the objective function. The present optimization approach is used for a real-life bridge project, leading to a feasible and acceptable design resulting in around 35% savings in cost per square meter of the deck area. Computational time required for optimization of the present problem is only a few seconds. Because constant design parameters have influence on the optimum design, this cost minimization procedure is performed for a range of such parameters. DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v138/i2/p273_s1?isAuthorized=no [article] Cost optimum design of posttensioned I-girder bridge using global optimization algorithm [texte imprimé] / Raquib Ahsan, Auteur ; Shohel Rana, Auteur ; Sayeed Nurul Ghani, Auteur . - 2012 . - pp. 273-284.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 138 N° 2 (Fevrier 2012) . - pp. 273-284
Mots-clés : Cost optimum design Prestressed concrete Post-tensioned girder bridge Constrained global optimization Résumé : This paper presents an optimization approach to the design of simply supported, post-tensioned, prestressed concrete I-girder bridges. The objective is to minimize the total cost of the structure, considering cost of materials, fabrication, and installation. For a particular girder span and bridge width, the design variables considered for cost minimization of the bridge system are girder spacing, various cross-sectional dimensions of the girder, number of strands per tendon, number of tendons, tendon layout and configuration, slab thickness, slab rebar, and shear rebar for the girder. Explicit constraints on the design variables are developed on the basis of geometric requirements, practical conditions for construction, and code restrictions. Implicit constraints for design are formulated as per the American Association of State Highway and Transportation Officials (AASHTO) Standard Specifications. The optimization problem is characterized by having a combination of continuous, discrete, and integer sets of design variables and multiple local minima. An optimization algorithm, evolutionary operation (EVOP), is used that is capable of locating directly with high probability the global minimum without requiring information on gradient or subgradient of the objective function. The present optimization approach is used for a real-life bridge project, leading to a feasible and acceptable design resulting in around 35% savings in cost per square meter of the deck area. Computational time required for optimization of the present problem is only a few seconds. Because constant design parameters have influence on the optimum design, this cost minimization procedure is performed for a range of such parameters. DEWEY : 624.17 ISSN : 0733-9445 En ligne : http://ascelibrary.org/sto/resource/1/jsendh/v138/i2/p273_s1?isAuthorized=no