Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J.-K. Im
Documents disponibles écrits par cet auteur
Affiner la rechercheA time-dependent proportional hazards survival model for credit risk analysis / J.-K. Im in Journal of the operational research society (JORS), Vol. 63 N° 3 (Mars 2012)
[article]
in Journal of the operational research society (JORS) > Vol. 63 N° 3 (Mars 2012) . - pp. 306–321
Titre : A time-dependent proportional hazards survival model for credit risk analysis Type de document : texte imprimé Auteurs : J.-K. Im, Auteur ; D. W. Apley, Auteur ; C. Qi, Auteur Année de publication : 2012 Article en page(s) : pp. 306–321 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Risk Predicting consumer credit risk Failure models Survival analysis for credit risk modelling Data analysis Estimating survival models Index. décimale : 001.424 Résumé : In the consumer credit industry, assessment of default risk is critically important for the financial health of both the lender and the borrower. Methods for predicting risk for an applicant using credit bureau and application data, typically based on logistic regression or survival analysis, are universally employed by credit card companies. Because of the manner in which the predictive models are fit using large historical sets of existing customer data that extend over many years, default trends, anomalies, and other temporal phenomena that result from dynamic economic conditions are not brought to light. We introduce a modification of the proportional hazards survival model that includes a time-dependency mechanism for capturing temporal phenomena, and we develop a maximum likelihood algorithm for fitting the model. Using a very large, real data set, we demonstrate that incorporating the time dependency can provide more accurate risk scoring, as well as important insight into dynamic market effects that can inform and enhance related decision making. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v63/n3/abs/jors201134a.html [article] A time-dependent proportional hazards survival model for credit risk analysis [texte imprimé] / J.-K. Im, Auteur ; D. W. Apley, Auteur ; C. Qi, Auteur . - 2012 . - pp. 306–321.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 63 N° 3 (Mars 2012) . - pp. 306–321
Mots-clés : Risk Predicting consumer credit risk Failure models Survival analysis for credit risk modelling Data analysis Estimating survival models Index. décimale : 001.424 Résumé : In the consumer credit industry, assessment of default risk is critically important for the financial health of both the lender and the borrower. Methods for predicting risk for an applicant using credit bureau and application data, typically based on logistic regression or survival analysis, are universally employed by credit card companies. Because of the manner in which the predictive models are fit using large historical sets of existing customer data that extend over many years, default trends, anomalies, and other temporal phenomena that result from dynamic economic conditions are not brought to light. We introduce a modification of the proportional hazards survival model that includes a time-dependency mechanism for capturing temporal phenomena, and we develop a maximum likelihood algorithm for fitting the model. Using a very large, real data set, we demonstrate that incorporating the time dependency can provide more accurate risk scoring, as well as important insight into dynamic market effects that can inform and enhance related decision making. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v63/n3/abs/jors201134a.html