Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Battarra
Documents disponibles écrits par cet auteur
Affiner la rechercheAn evolutionary approach for tuning parametric Esau and Williams heuristics / M. Battarra in Journal of the operational research society (JORS), Vol. 63 N° 3 (Mars 2012)
[article]
in Journal of the operational research society (JORS) > Vol. 63 N° 3 (Mars 2012) . - pp. 368–378
Titre : An evolutionary approach for tuning parametric Esau and Williams heuristics Type de document : texte imprimé Auteurs : M. Battarra, Auteur ; T. Öncan, Auteur ; Altinel, I. K., Auteur Année de publication : 2012 Article en page(s) : pp. 368–378 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Capacitated minimum spanning tree problem Evolutionary algorithms Parameter tuning Index. décimale : 001.424 Résumé : Owing to its inherent difficulty, many heuristic solution methods have been proposed for the capacitated minimum spanning tree problem. On the basis of recent developments, it is clear that the best metaheuristic implementations outperform classical heuristics. Unfortunately, they require long computing times and may not be very easy to implement, which explains the popularity of the Esau and Williams heuristic in practice, and the motivation behind its enhancements. Some of these enhancements involve parameters and their accuracy becomes nearly competitive with the best metaheuristics when they are tuned properly, which is usually done using a grid search within given search intervals for the parameters. In this work, we propose a genetic algorithm parameter setting procedure. Computational results show that the new method is even more accurate than an enumerative approach, and much more efficient. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v63/n3/abs/jors201136a.html [article] An evolutionary approach for tuning parametric Esau and Williams heuristics [texte imprimé] / M. Battarra, Auteur ; T. Öncan, Auteur ; Altinel, I. K., Auteur . - 2012 . - pp. 368–378.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 63 N° 3 (Mars 2012) . - pp. 368–378
Mots-clés : Capacitated minimum spanning tree problem Evolutionary algorithms Parameter tuning Index. décimale : 001.424 Résumé : Owing to its inherent difficulty, many heuristic solution methods have been proposed for the capacitated minimum spanning tree problem. On the basis of recent developments, it is clear that the best metaheuristic implementations outperform classical heuristics. Unfortunately, they require long computing times and may not be very easy to implement, which explains the popularity of the Esau and Williams heuristic in practice, and the motivation behind its enhancements. Some of these enhancements involve parameters and their accuracy becomes nearly competitive with the best metaheuristics when they are tuned properly, which is usually done using a grid search within given search intervals for the parameters. In this work, we propose a genetic algorithm parameter setting procedure. Computational results show that the new method is even more accurate than an enumerative approach, and much more efficient. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v63/n3/abs/jors201136a.html