Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ali Ghandeharioon
Documents disponibles écrits par cet auteur
Affiner la rechercheLaboratory and finite-element investigation of soil disturbance associated with the installation of mandrel-driven prefabricated vertical drains / Ali Ghandeharioon in Journal of geotechnical and geoenvironmental engineering, Vol. 138 N° 3 (Mars 2012)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 3 (Mars 2012) . - pp. 295-308
Titre : Laboratory and finite-element investigation of soil disturbance associated with the installation of mandrel-driven prefabricated vertical drains Type de document : texte imprimé Auteurs : Ali Ghandeharioon, Auteur ; Buddhima Indraratna, Auteur ; Cholachat Rujikiatkamjorn, Auteur Année de publication : 2012 Article en page(s) : pp. 295-308 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Mandrel-driven prefabricated vertical drains Laboratory tests Finite-element method Large-strain frictional contact Smear zone Excess pore water pressure Résumé : A series of large-scale laboratory experiments, along with numerical analyses, using the commercial finite-element software package, ABAQUS, were performed to investigate the installation of mandrel-driven prefabricated vertical drains (PVDs). The laboratory tests were conducted using a specially designed large-scale consolidometer and a novel mandrel-driving machine capable of working at installation rates in the range of usual practices. The finite-element simulations include coupled analyses with a large-strain formulation. Coulomb’s law of friction and the penalty method are incorporated into the numerical models. The variations of pore water pressure at different locations during installation of a PVD and withdrawal of the mandrel are presented. Good agreement is found between pore pressures measured in the laboratory and predicted numerically. Moreover, finite-element analyses reveal that when a mandrel is pushed into the soil deposit, the soil surrounding the mandrel moves radially and downwards. Laboratory tests for moisture content and the numerically predicted variations of plastic shear strain, normalized with the rigidity index of the soil, show that for a given type of soft soil subjected to a particular rate of mandrel installation, the size of the smear zone decreases as the in situ effective stresses increase. The finite-element model has been applied to a case history from the Second Bangkok International Airport in Thailand and proves that the model can be applied to field conditions. DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.org/gto/resource/1/jggefk/v138/i3/p295_s1?isAuthorized=no [article] Laboratory and finite-element investigation of soil disturbance associated with the installation of mandrel-driven prefabricated vertical drains [texte imprimé] / Ali Ghandeharioon, Auteur ; Buddhima Indraratna, Auteur ; Cholachat Rujikiatkamjorn, Auteur . - 2012 . - pp. 295-308.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 3 (Mars 2012) . - pp. 295-308
Mots-clés : Mandrel-driven prefabricated vertical drains Laboratory tests Finite-element method Large-strain frictional contact Smear zone Excess pore water pressure Résumé : A series of large-scale laboratory experiments, along with numerical analyses, using the commercial finite-element software package, ABAQUS, were performed to investigate the installation of mandrel-driven prefabricated vertical drains (PVDs). The laboratory tests were conducted using a specially designed large-scale consolidometer and a novel mandrel-driving machine capable of working at installation rates in the range of usual practices. The finite-element simulations include coupled analyses with a large-strain formulation. Coulomb’s law of friction and the penalty method are incorporated into the numerical models. The variations of pore water pressure at different locations during installation of a PVD and withdrawal of the mandrel are presented. Good agreement is found between pore pressures measured in the laboratory and predicted numerically. Moreover, finite-element analyses reveal that when a mandrel is pushed into the soil deposit, the soil surrounding the mandrel moves radially and downwards. Laboratory tests for moisture content and the numerically predicted variations of plastic shear strain, normalized with the rigidity index of the soil, show that for a given type of soft soil subjected to a particular rate of mandrel installation, the size of the smear zone decreases as the in situ effective stresses increase. The finite-element model has been applied to a case history from the Second Bangkok International Airport in Thailand and proves that the model can be applied to field conditions. DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.org/gto/resource/1/jggefk/v138/i3/p295_s1?isAuthorized=no