Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Sachchit Majhi
Documents disponibles écrits par cet auteur
Affiner la rechercheResponse Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst / Pravakar Mohanty in Industrial & engineering chemistry research, Vol. 51 N° 13 (Avril 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 13 (Avril 2012) . - pp. 4843–4853
Titre : Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst Type de document : texte imprimé Auteurs : Pravakar Mohanty, Auteur ; Sachchit Majhi, Auteur ; J.N. Sahu, Auteur Année de publication : 2012 Article en page(s) : pp. 4843–4853 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Optimization Hydrogenation Hydrocarbon Résumé : This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202866q [article] Response Surface Modeling and Optimization of CO Hydrogenation for Higher Liquid Hydrocarbon Using Cu–Co–Cr + ZSM-5 Bifunctional Catalyst [texte imprimé] / Pravakar Mohanty, Auteur ; Sachchit Majhi, Auteur ; J.N. Sahu, Auteur . - 2012 . - pp. 4843–4853.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 13 (Avril 2012) . - pp. 4843–4853
Mots-clés : Optimization Hydrogenation Hydrocarbon Résumé : This paper represents an extensive statistical analysis of the combined effects of operating variables (temperature, pressure, reaction time, and H2/CO flow rate) toward CO-hydrogenation for liquid hydrocarbon which was performed in a fixed bed benchtop reactor system, by means of response surface methodology (RSM). The application of RSM in conjunction with a central composite rotatable design (CCRD) was used for modeling and optimizing the performance of a multivariable FT-synthesis process using bifunctional CuO–CoO–Cr2O3 + ZSM-5 catalyst. The CuO–CoO–Cr2O3 catalyst was synthesized by a coprecipitation method, and its physiochemical characterization was done by using Brunauer–Emmett–Teller, temperature-programmed reduction, thermogravimetric analysis, X-ray diffraction, and transmission electron mocroscopy techniques. Through this work a 50 full factorial (CCRD) experimental design was employed. Maximum CO conversion was predicted and experimentally validated to determine optimum conditions that allow improvement of the performance of the catalyst for a long run time of 120 h. The optimum values of CO conversion, temperature, pressure, and (H2/CO) molar ratio were found to be 64.3%, 310 ± 4 °C, 33–36 bar, and 1.0, respectively. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202866q