Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhan-Ke Li
Documents disponibles écrits par cet auteur
Affiner la rechercheThe early cretaceous Yangzhaiyu lode gold deposit, north China Craton / Jian-Wei Li in Economic geology, Vol. 107 N° 1 (Janvier/Fevrier 2012)
[article]
in Economic geology > Vol. 107 N° 1 (Janvier/Fevrier 2012) . - pp. 43-79
Titre : The early cretaceous Yangzhaiyu lode gold deposit, north China Craton : a link between craton reactivation and gold veining Type de document : texte imprimé Auteurs : Jian-Wei Li, Auteur ; Zhan-Ke Li, Auteur ; Mei-Fu Zhou, Auteur Année de publication : 2012 Article en page(s) : pp. 43-79 Note générale : Economic geology Langues : Anglais (eng) Mots-clés : Yangzhaiyu gold deposits Gold veining China Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : The Yangzhaiyu gold deposit is one of numerous lode gold deposits in the Xiaoqinling district, southern margin of the North China Craton. Gold mineralization is hosted in Neoarchean to early Paleoproterozoic amphibolite facies metamorphic rocks and consists of auriferous quartz veins and subordinate disseminated ores in the vein-proximal alteration zone. Ore-related hydrothermal alteration is dominated by sericite + quartz + sulfide assemblages close to gold veins, and biotite + quartz + pyrite ± chlorite ± epidote alteration generally distal from mineralization. Pyrite is the predominant sulfide mineral, locally coexisting with minor amounts of chalcopyrite, sphalerite, and galena. Gold occurs mostly as free gold enclosed in or filling microfractures of pyrite and quartz and is also present in equilibrium with Au-bearing tellurides, mainly petzite and calaverite coexisting with hessite, tellurobismuthite, and altaite.
Fluid inclusion studies suggest that gold veins were deposited at intermediate temperatures (175°–313°C) from aqueous or aqueous-carbonic fluids with moderate salinity (5–14 wt % NaCl equiv). δ34S values of sulfide minerals range mainly from 2.0 to 4.4‰, whereas auriferous quartz vein samples have δ18O values of 12.4 to 9.6‰, with calculated δ18OH2O values of 6.0 to 3.2‰. Gold-related pyrite grains yield elevated 3He/4He ratios (1.51-0.32 Ra) relative to crustal reservoirs and mantle-like 20Ne/22Ne and 21Ne/22Ne ratios (9.90-9.68 and 0.029, respectively). The stable and noble gas isotopes thus suggest deep-seated, most likely magmatic and mantle-derived, sources for the ore fluids, sulfur and, by inference, other components in the ore system.
40Ar/39Ar dating of ore-related sericite and biotite separates indicates two episodes of gold genesis at 134.5 to 132.3 and 124.3 to 123.7 Ma. The mineralization ages overlap zircon U-Pb ages of 141.0 ± 1.6 to 125.8 ± 1.4 Ma (2σ) for the Wenyu and Niangniangshan monzogranite Plutons and a number of mafic to intermediate dikes intruding these Plutons, all being proximal to the Yangzhaiyu gold deposit. The synchronism of gold genesis and magmatism provides additional weights of evidence for a magmatic derivation of ore fluids and sulfur. The geochronologic data also suggest that gold veining took place billions of years after the stabilization of the North China Craton and associated metamorphism in the Late Archean to early Paleoproterozoic. This contrasts sharply to lode gold deposits in other Precambrian cratons that formed predominantly in Late Archean to Paleoproterozoic, temporarily and genetically related to regional high-grade metamorphism and compressional or transpressional tectonism.
Available data have demonstrated that the North China Craton was reactivated in the late Mesozoic, as marked by voluminous igneous rocks, faulted-basin formation, high crustal heat flow, and widespread metamorphic core complexes in the eastern part of the craton. It is thus suggested that the Yangzhaiyu gold deposit, together with other deposits of similar ages in the Xiaoqinling district, were products of this craton reactivation event. Lithospheric extension and extensive magmatism related to the craton reactivation may have provided sufficient heat energy, fluid, and sulfur required for the formation of the gold deposits.DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/107/1/43.abstract [article] The early cretaceous Yangzhaiyu lode gold deposit, north China Craton : a link between craton reactivation and gold veining [texte imprimé] / Jian-Wei Li, Auteur ; Zhan-Ke Li, Auteur ; Mei-Fu Zhou, Auteur . - 2012 . - pp. 43-79.
Economic geology
Langues : Anglais (eng)
in Economic geology > Vol. 107 N° 1 (Janvier/Fevrier 2012) . - pp. 43-79
Mots-clés : Yangzhaiyu gold deposits Gold veining China Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : The Yangzhaiyu gold deposit is one of numerous lode gold deposits in the Xiaoqinling district, southern margin of the North China Craton. Gold mineralization is hosted in Neoarchean to early Paleoproterozoic amphibolite facies metamorphic rocks and consists of auriferous quartz veins and subordinate disseminated ores in the vein-proximal alteration zone. Ore-related hydrothermal alteration is dominated by sericite + quartz + sulfide assemblages close to gold veins, and biotite + quartz + pyrite ± chlorite ± epidote alteration generally distal from mineralization. Pyrite is the predominant sulfide mineral, locally coexisting with minor amounts of chalcopyrite, sphalerite, and galena. Gold occurs mostly as free gold enclosed in or filling microfractures of pyrite and quartz and is also present in equilibrium with Au-bearing tellurides, mainly petzite and calaverite coexisting with hessite, tellurobismuthite, and altaite.
Fluid inclusion studies suggest that gold veins were deposited at intermediate temperatures (175°–313°C) from aqueous or aqueous-carbonic fluids with moderate salinity (5–14 wt % NaCl equiv). δ34S values of sulfide minerals range mainly from 2.0 to 4.4‰, whereas auriferous quartz vein samples have δ18O values of 12.4 to 9.6‰, with calculated δ18OH2O values of 6.0 to 3.2‰. Gold-related pyrite grains yield elevated 3He/4He ratios (1.51-0.32 Ra) relative to crustal reservoirs and mantle-like 20Ne/22Ne and 21Ne/22Ne ratios (9.90-9.68 and 0.029, respectively). The stable and noble gas isotopes thus suggest deep-seated, most likely magmatic and mantle-derived, sources for the ore fluids, sulfur and, by inference, other components in the ore system.
40Ar/39Ar dating of ore-related sericite and biotite separates indicates two episodes of gold genesis at 134.5 to 132.3 and 124.3 to 123.7 Ma. The mineralization ages overlap zircon U-Pb ages of 141.0 ± 1.6 to 125.8 ± 1.4 Ma (2σ) for the Wenyu and Niangniangshan monzogranite Plutons and a number of mafic to intermediate dikes intruding these Plutons, all being proximal to the Yangzhaiyu gold deposit. The synchronism of gold genesis and magmatism provides additional weights of evidence for a magmatic derivation of ore fluids and sulfur. The geochronologic data also suggest that gold veining took place billions of years after the stabilization of the North China Craton and associated metamorphism in the Late Archean to early Paleoproterozoic. This contrasts sharply to lode gold deposits in other Precambrian cratons that formed predominantly in Late Archean to Paleoproterozoic, temporarily and genetically related to regional high-grade metamorphism and compressional or transpressional tectonism.
Available data have demonstrated that the North China Craton was reactivated in the late Mesozoic, as marked by voluminous igneous rocks, faulted-basin formation, high crustal heat flow, and widespread metamorphic core complexes in the eastern part of the craton. It is thus suggested that the Yangzhaiyu gold deposit, together with other deposits of similar ages in the Xiaoqinling district, were products of this craton reactivation event. Lithospheric extension and extensive magmatism related to the craton reactivation may have provided sufficient heat energy, fluid, and sulfur required for the formation of the gold deposits.DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/107/1/43.abstract