Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chris Aldrich
Documents disponibles écrits par cet auteur
Affiner la rechercheUnsupervised process fault detection with random forests / Lidia Auret in Industrial & engineering chemistry research, Vol. 49 N° 19 (Octobre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 19 (Octobre 2010) . - pp.9184–9194
Titre : Unsupervised process fault detection with random forests Type de document : texte imprimé Auteurs : Lidia Auret, Auteur ; Chris Aldrich, Auteur Année de publication : 2010 Article en page(s) : pp.9184–9194 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Process Detection Résumé : Process monitoring technology plays a vital role in the automation of mineral processing plants, where there is an increased emphasis on safe, cost-effective, and environmentally responsible operation. Members of an important class of advanced diagnostic systems are data-driven and deal with potentially large numbers of variables at any given time by generating diagnostic sequences in lower-dimensional spaces. Despite rapid development in this field, nonlinear process systems remain challenging, and in this investigation, a novel approach to the monitoring of complex systems based on the use of random forest models is proposed. Random forest models consist of ensembles of classification and regression trees in which the model response is determined by voting committees of independent binary decision trees. In this study, a framework for diagnosing steady- and unsteady-state faults with random forests is proposed and demonstrated with simulated and real-world case studies. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901975c [article] Unsupervised process fault detection with random forests [texte imprimé] / Lidia Auret, Auteur ; Chris Aldrich, Auteur . - 2010 . - pp.9184–9194.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 19 (Octobre 2010) . - pp.9184–9194
Mots-clés : Process Detection Résumé : Process monitoring technology plays a vital role in the automation of mineral processing plants, where there is an increased emphasis on safe, cost-effective, and environmentally responsible operation. Members of an important class of advanced diagnostic systems are data-driven and deal with potentially large numbers of variables at any given time by generating diagnostic sequences in lower-dimensional spaces. Despite rapid development in this field, nonlinear process systems remain challenging, and in this investigation, a novel approach to the monitoring of complex systems based on the use of random forest models is proposed. Random forest models consist of ensembles of classification and regression trees in which the model response is determined by voting committees of independent binary decision trees. In this study, a framework for diagnosing steady- and unsteady-state faults with random forests is proposed and demonstrated with simulated and real-world case studies. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901975c