Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Levi B. Wood
Documents disponibles écrits par cet auteur
Affiner la rechercheCellular stochastic control of the collective output of a class of distributed hysteretic systems / Levi B. Wood in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 133 N° 6 (Novembre 2011)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 6 (Novembre 2011) . - 11 p.
Titre : Cellular stochastic control of the collective output of a class of distributed hysteretic systems Type de document : texte imprimé Auteurs : Levi B. Wood, Auteur ; Harry Asada, H., Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Dynamic systems Langues : Anglais (eng) Mots-clés : Distributed control Feedback Hysteresis Intelligent actuators Robust control Shape memory effects Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : Stable stochastic feedback control of an aggregate output from a multitude of cellular units is presented in this paper. Similar to a skeletal muscle comprising a number of muscle fibers, the plant considered in this paper consists of many independent units (called cellular units), each of which contributes to an aggregate output of the whole system. The central controller regulates the aggregate output by stochastically recruiting as many cellular units as needed for producing a required output. Two challenges are considered. The first is how to deal with individual units having pronounced hysteresis and long latency time in transient response. It will be shown that slow response and poor stability due to the hysteresis and latency time can significantly be improved by coordinating the multitude of cellular units, which are in diverse phases in the hysteresis loop. The second challenge is how to build a central controller that coordinates the multitude of cellular units without knowing the state of individual units. Stochastic broadcast feedback is presented as a solution that meets those requirements. The central controller observes only the aggregate output value rather than the output and state of each unit, compares the aggregate output against a reference, and broadcasts an error signal to all the units, which are anonymous. In turn, each cellular unit makes a control decision stochastically with state transition probabilities that are modulated by the broadcast error signal from the central controller. Stability analysis based on supermatingale theory guarantees that this stochastic broadcast feedback is stable and robust against cell failures. The method is applied to the control of shape-memory-alloy muscle actuators with cellular architecture. Despite pronounced hysteresis and long latency time, stochastic broadcast feedback can achieve fast and stable control. Simulation experiments verify the theoretical results. DEWEY : 553 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000133000006 [...] [article] Cellular stochastic control of the collective output of a class of distributed hysteretic systems [texte imprimé] / Levi B. Wood, Auteur ; Harry Asada, H., Auteur . - 2012 . - 11 p.
Dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 6 (Novembre 2011) . - 11 p.
Mots-clés : Distributed control Feedback Hysteresis Intelligent actuators Robust control Shape memory effects Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : Stable stochastic feedback control of an aggregate output from a multitude of cellular units is presented in this paper. Similar to a skeletal muscle comprising a number of muscle fibers, the plant considered in this paper consists of many independent units (called cellular units), each of which contributes to an aggregate output of the whole system. The central controller regulates the aggregate output by stochastically recruiting as many cellular units as needed for producing a required output. Two challenges are considered. The first is how to deal with individual units having pronounced hysteresis and long latency time in transient response. It will be shown that slow response and poor stability due to the hysteresis and latency time can significantly be improved by coordinating the multitude of cellular units, which are in diverse phases in the hysteresis loop. The second challenge is how to build a central controller that coordinates the multitude of cellular units without knowing the state of individual units. Stochastic broadcast feedback is presented as a solution that meets those requirements. The central controller observes only the aggregate output value rather than the output and state of each unit, compares the aggregate output against a reference, and broadcasts an error signal to all the units, which are anonymous. In turn, each cellular unit makes a control decision stochastically with state transition probabilities that are modulated by the broadcast error signal from the central controller. Stability analysis based on supermatingale theory guarantees that this stochastic broadcast feedback is stable and robust against cell failures. The method is applied to the control of shape-memory-alloy muscle actuators with cellular architecture. Despite pronounced hysteresis and long latency time, stochastic broadcast feedback can achieve fast and stable control. Simulation experiments verify the theoretical results. DEWEY : 553 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000133000006 [...]