Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. Karami-Mollaee
Documents disponibles écrits par cet auteur
Affiner la recherchePosition control of servomotors using neural dynamic sliding mode / A. Karami-Mollaee in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 133 N° 6 (Novembre 2011)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 6 (Novembre 2011) . - 10 p.
Titre : Position control of servomotors using neural dynamic sliding mode Type de document : texte imprimé Auteurs : A. Karami-Mollaee, Auteur ; N. Pariz, Auteur ; H. M. Shanechi, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Dynamic systems Langues : Anglais (eng) Mots-clés : Adaptive control Learning (artificial intelligence) Machine control Neurocontrollers Nonlinear control systems PI control Position control Radial basis function networks Robust control Servomotors State feedback Variable structure systems Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : In this paper, position control of servomotors is addressed. A radial basis function neural network is employed to identify the unknown nonlinear function of the plant model, and then a robust adaptive law is developed to train the parameters of the neural network, which does not require any preliminary off-line weight learning. Moreover, base on the identified model, we propose a new dynamic sliding mode control (DSMC) for a general class of nonaffine nonlinear systems by defining a new adaptive proportional-integral sliding surface and employing a linear state feedback. The main property of proposed controller is that it does not need an upper bound for the uncertainty and identified model; moreover, the switching gain increases and decreases according to the system circumstance by employing an adaptive procedure. Then, chattering is removed completely by using the DSMC with a small switching gain. DEWEY : 553 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000133000006 [...] [article] Position control of servomotors using neural dynamic sliding mode [texte imprimé] / A. Karami-Mollaee, Auteur ; N. Pariz, Auteur ; H. M. Shanechi, Auteur . - 2012 . - 10 p.
Dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 6 (Novembre 2011) . - 10 p.
Mots-clés : Adaptive control Learning (artificial intelligence) Machine control Neurocontrollers Nonlinear control systems PI control Position control Radial basis function networks Robust control Servomotors State feedback Variable structure systems Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : In this paper, position control of servomotors is addressed. A radial basis function neural network is employed to identify the unknown nonlinear function of the plant model, and then a robust adaptive law is developed to train the parameters of the neural network, which does not require any preliminary off-line weight learning. Moreover, base on the identified model, we propose a new dynamic sliding mode control (DSMC) for a general class of nonaffine nonlinear systems by defining a new adaptive proportional-integral sliding surface and employing a linear state feedback. The main property of proposed controller is that it does not need an upper bound for the uncertainty and identified model; moreover, the switching gain increases and decreases according to the system circumstance by employing an adaptive procedure. Then, chattering is removed completely by using the DSMC with a small switching gain. DEWEY : 553 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000133000006 [...]