Détail de l'auteur
Auteur H. M. Shanechi |
Documents disponibles écrits par cet auteur (2)



Position control of induction and DC servomotors / Shahnazi, R. in IEEE transactions on energy conversion, Vol. 23 N°1 (Mars 2008)
![]()
[article]
Titre : Position control of induction and DC servomotors Type de document : texte imprimé Auteurs : Shahnazi, R., Auteur ; H. M. Shanechi, Auteur ; N. Pariz, Auteur Année de publication : 2008 Article en page(s) : pp. 138 - 147 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Adaptive control DC motors fuzzy systems induction sliding mode control (SMC) Résumé : A position control of a class of servomotors is addressed in this paper via a novel adaptive fuzzy PI sliding mode control. The premise and the consequence parts of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control is approximated by an adaptive PI control structure. Moreover, the bound of the discontinuous control term is assumed to be unknown, and an adaptive mechanism is used to estimate this bound. All adaptive laws are derived via Lyapunov synthesis method, thereby guaranteeing the closed-loop stability. The proposed approach has the added advantage that, for external disturbances, it only requires a bound to exist, without needing to know the magnitude of this bound. The proposed controller is applied to control a model of uncertain induction servomotor subject to significant disturbances and a model of DC servomotor with unknown parameters and uncertainty in load condition. The analysis of simulations reveals the effectiveness of the proposed method in controlling servomotors in terms of significant reduction in chattering while maintaining asymptotic convergence. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4392498&sortType%3Das [...]
in IEEE transactions on energy conversion > Vol. 23 N°1 (Mars 2008) . - pp. 138 - 147[article] Position control of induction and DC servomotors [texte imprimé] / Shahnazi, R., Auteur ; H. M. Shanechi, Auteur ; N. Pariz, Auteur . - 2008 . - pp. 138 - 147.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 N°1 (Mars 2008) . - pp. 138 - 147
Mots-clés : Adaptive control DC motors fuzzy systems induction sliding mode control (SMC) Résumé : A position control of a class of servomotors is addressed in this paper via a novel adaptive fuzzy PI sliding mode control. The premise and the consequence parts of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control is approximated by an adaptive PI control structure. Moreover, the bound of the discontinuous control term is assumed to be unknown, and an adaptive mechanism is used to estimate this bound. All adaptive laws are derived via Lyapunov synthesis method, thereby guaranteeing the closed-loop stability. The proposed approach has the added advantage that, for external disturbances, it only requires a bound to exist, without needing to know the magnitude of this bound. The proposed controller is applied to control a model of uncertain induction servomotor subject to significant disturbances and a model of DC servomotor with unknown parameters and uncertainty in load condition. The analysis of simulations reveals the effectiveness of the proposed method in controlling servomotors in terms of significant reduction in chattering while maintaining asymptotic convergence. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4392498&sortType%3Das [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Position control of servomotors using neural dynamic sliding mode / A. Karami-Mollaee in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 133 N° 6 (Novembre 2011)
![]()
[article]
Titre : Position control of servomotors using neural dynamic sliding mode Type de document : texte imprimé Auteurs : A. Karami-Mollaee, Auteur ; N. Pariz, Auteur ; H. M. Shanechi, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Dynamic systems Langues : Anglais (eng) Mots-clés : Adaptive control Learning (artificial intelligence) Machine Neurocontrollers Nonlinear systems PI Position Radial basis function networks Robust Servomotors State feedback Variable structure Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : In this paper, position control of servomotors is addressed. A radial basis function neural network is employed to identify the unknown nonlinear function of the plant model, and then a robust adaptive law is developed to train the parameters of the neural network, which does not require any preliminary off-line weight learning. Moreover, base on the identified model, we propose a new dynamic sliding mode control (DSMC) for a general class of nonaffine nonlinear systems by defining a new adaptive proportional-integral sliding surface and employing a linear state feedback. The main property of proposed controller is that it does not need an upper bound for the uncertainty and identified model; moreover, the switching gain increases and decreases according to the system circumstance by employing an adaptive procedure. Then, chattering is removed completely by using the DSMC with a small switching gain. DEWEY : 553 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000133000006 [...]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 6 (Novembre 2011) . - 10 p.[article] Position control of servomotors using neural dynamic sliding mode [texte imprimé] / A. Karami-Mollaee, Auteur ; N. Pariz, Auteur ; H. M. Shanechi, Auteur . - 2012 . - 10 p.
Dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 133 N° 6 (Novembre 2011) . - 10 p.
Mots-clés : Adaptive control Learning (artificial intelligence) Machine Neurocontrollers Nonlinear systems PI Position Radial basis function networks Robust Servomotors State feedback Variable structure Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : In this paper, position control of servomotors is addressed. A radial basis function neural network is employed to identify the unknown nonlinear function of the plant model, and then a robust adaptive law is developed to train the parameters of the neural network, which does not require any preliminary off-line weight learning. Moreover, base on the identified model, we propose a new dynamic sliding mode control (DSMC) for a general class of nonaffine nonlinear systems by defining a new adaptive proportional-integral sliding surface and employing a linear state feedback. The main property of proposed controller is that it does not need an upper bound for the uncertainty and identified model; moreover, the switching gain increases and decreases according to the system circumstance by employing an adaptive procedure. Then, chattering is removed completely by using the DSMC with a small switching gain. DEWEY : 553 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000133000006 [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire