Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Like Li
Documents disponibles écrits par cet auteur
Affiner la rechercheHeat transfer between colliding surfaces and particles / Like Li in Journal of heat transfer, Vol. 134 N° 1 (Janvier 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 12 p.
Titre : Heat transfer between colliding surfaces and particles Type de document : texte imprimé Auteurs : Like Li, Auteur ; Renwei Mei, Auteur ; James F. Klausner, Auteur Année de publication : 2012 Article en page(s) : 12 p. Note générale : Heat transfer Langues : Anglais (eng) Mots-clés : Finite difference methods Flow simulation Fractals Heat transfer Thermal conductivity Thermal diffusion Two-phase flow Index. décimale : 536 Chaleur. Thermodynamique Résumé : Collisional heat transfer between two contacting curved surfaces is investigated computationally using a finite difference method and analytically using various asymptotic methods. Transformed coordinates that scale with the contact radius and the diffusion length are used for the computations. Hertzian contact theory of elasticity is used to characterize the contact area as a function of time. For an axisymmetric contact area, a two-dimensional self-similar solution for the thermal field during the initial period of contact is obtained, and it serves as an initial condition for the heat transfer simulation throughout the entire duration of collision. A two-dimensional asymptotic heat transfer result is obtained for small Fourier number. For finite Fourier numbers, local analytical solutions are presented to elucidate the nature of the singularity of the thermal field and heat flux near the contact point. From the computationally determined heat transfer during the collision, a closed-form formula is developed to predict the heat transfer as a function of the Fourier number, the thermal diffusivity ratio, and the thermal conductivity ratio of the impacting particles. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000001 [...] [article] Heat transfer between colliding surfaces and particles [texte imprimé] / Like Li, Auteur ; Renwei Mei, Auteur ; James F. Klausner, Auteur . - 2012 . - 12 p.
Heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 12 p.
Mots-clés : Finite difference methods Flow simulation Fractals Heat transfer Thermal conductivity Thermal diffusion Two-phase flow Index. décimale : 536 Chaleur. Thermodynamique Résumé : Collisional heat transfer between two contacting curved surfaces is investigated computationally using a finite difference method and analytically using various asymptotic methods. Transformed coordinates that scale with the contact radius and the diffusion length are used for the computations. Hertzian contact theory of elasticity is used to characterize the contact area as a function of time. For an axisymmetric contact area, a two-dimensional self-similar solution for the thermal field during the initial period of contact is obtained, and it serves as an initial condition for the heat transfer simulation throughout the entire duration of collision. A two-dimensional asymptotic heat transfer result is obtained for small Fourier number. For finite Fourier numbers, local analytical solutions are presented to elucidate the nature of the singularity of the thermal field and heat flux near the contact point. From the computationally determined heat transfer during the collision, a closed-form formula is developed to predict the heat transfer as a function of the Fourier number, the thermal diffusivity ratio, and the thermal conductivity ratio of the impacting particles. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000001 [...]