[article]
Titre : |
Enhanced condensation of ethylene glycol on single pin-fin tubes : effect of pin geometry |
Type de document : |
texte imprimé |
Auteurs : |
Hafiz Muhammad Ali, Auteur ; Adrian Briggs, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
08 p. |
Note générale : |
Heat transfer |
Langues : |
Anglais (eng) |
Mots-clés : |
Condensation Heat transfer Organic compounds Pipe flow Surface tension |
Index. décimale : |
553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais |
Résumé : |
This paper presents a fundamental study into the underlying mechanisms influencing heat transfer during condensation on enhanced surfaces. New experimental data are reported for condensation of ethylene glycol at near atmospheric pressure and low velocity on 11 different 3-dimensional pin-fin tubes tested individually. Enhancements of the vapor-side, heat-transfer coefficients were found between 3 and 5.5 when compared to a plain tube at the same vapor-side temperature difference. Heat-transfer enhancement was found to be strongly dependent on the active surface area of the tubes, i.e., on the surface area of the parts of the tube and pin surface not covered by condensate retained by surface tension. For all the tubes, vapor-side, heat-transfer enhancements were found to be approximately twice the corresponding active-area enhancements. The best performing pin-fin tube gave a heat-transfer enhancement of 5.5; 17% higher than obtained from “optimised” two-dimensional fin-tubes reported in the literature and about 24% higher than the “equivalent” two-dimensional integral-fin tube (i.e., with the same fin-root diameter, longitudinal fin spacing and thickness, and fin height). The effects of surface area and surface tension induced enhancement and retention are discussed in the light of the new data and those of previous investigations. |
DEWEY : |
536 |
ISSN : |
0022-1481 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000001 [...] |
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 08 p.
[article] Enhanced condensation of ethylene glycol on single pin-fin tubes : effect of pin geometry [texte imprimé] / Hafiz Muhammad Ali, Auteur ; Adrian Briggs, Auteur . - 2012 . - 08 p. Heat transfer Langues : Anglais ( eng) in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 08 p.
Mots-clés : |
Condensation Heat transfer Organic compounds Pipe flow Surface tension |
Index. décimale : |
553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais |
Résumé : |
This paper presents a fundamental study into the underlying mechanisms influencing heat transfer during condensation on enhanced surfaces. New experimental data are reported for condensation of ethylene glycol at near atmospheric pressure and low velocity on 11 different 3-dimensional pin-fin tubes tested individually. Enhancements of the vapor-side, heat-transfer coefficients were found between 3 and 5.5 when compared to a plain tube at the same vapor-side temperature difference. Heat-transfer enhancement was found to be strongly dependent on the active surface area of the tubes, i.e., on the surface area of the parts of the tube and pin surface not covered by condensate retained by surface tension. For all the tubes, vapor-side, heat-transfer enhancements were found to be approximately twice the corresponding active-area enhancements. The best performing pin-fin tube gave a heat-transfer enhancement of 5.5; 17% higher than obtained from “optimised” two-dimensional fin-tubes reported in the literature and about 24% higher than the “equivalent” two-dimensional integral-fin tube (i.e., with the same fin-root diameter, longitudinal fin spacing and thickness, and fin height). The effects of surface area and surface tension induced enhancement and retention are discussed in the light of the new data and those of previous investigations. |
DEWEY : |
536 |
ISSN : |
0022-1481 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000001 [...] |
|