Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Michael Tsapatsis
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling and optimization of membrane reactors for carbon capture in integrated gasification combined cycle units / Fernando V. Lima in Industrial & engineering chemistry research, Vol. 51 N° 15 (Avril 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 15 (Avril 2012) . - pp. 5480-5489
Titre : Modeling and optimization of membrane reactors for carbon capture in integrated gasification combined cycle units Type de document : texte imprimé Auteurs : Fernando V. Lima, Auteur ; Prodromos Daoutidis, Auteur ; Michael Tsapatsis, Auteur Année de publication : 2012 Article en page(s) : pp. 5480-5489 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Gasification Membrane reactor Optimization Modeling Résumé : This paper investigates the alternative of precombustion capture of carbon dioxide from integrated gasification combined cycle (IGCC) plants using membrane reactors equipped with H2-selective zeolite membranes for the water gas shift reaction. Specifically, a one-dimensional and isothermal membrane reactor model is developed. This model is used for simulation and optimization studies considering cocurrent and countercurrent modes of reactor operation. The simulation results indicate successful countercurrent cases that satisfy all of the specified targets and constraints. With use of this developed model, a novel optimization problem is formulated and solved to guide the selection of the optimal reactor design among typical scenarios of operation. The optimization results suggest as optimal solution a reactor design with a preshift followed by a membrane reactor. The obtained optimal design enables a more efficient membrane use by placing it in the optimal location. This design also results in savings of as high as 25% (in the range of 10-25%) in terms of membrane material when compared to the original membrane reactor design. For the price range of zeolite membranes considered on the order of $1000-10 000/m2 and for large-scale applications, in which the membrane surface areas are on the order of 2000 m2, 25% of savings implies cost reductions on the order of millions of dollars (as high as $5 000 000 in this case). ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=25815826 [article] Modeling and optimization of membrane reactors for carbon capture in integrated gasification combined cycle units [texte imprimé] / Fernando V. Lima, Auteur ; Prodromos Daoutidis, Auteur ; Michael Tsapatsis, Auteur . - 2012 . - pp. 5480-5489.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 15 (Avril 2012) . - pp. 5480-5489
Mots-clés : Gasification Membrane reactor Optimization Modeling Résumé : This paper investigates the alternative of precombustion capture of carbon dioxide from integrated gasification combined cycle (IGCC) plants using membrane reactors equipped with H2-selective zeolite membranes for the water gas shift reaction. Specifically, a one-dimensional and isothermal membrane reactor model is developed. This model is used for simulation and optimization studies considering cocurrent and countercurrent modes of reactor operation. The simulation results indicate successful countercurrent cases that satisfy all of the specified targets and constraints. With use of this developed model, a novel optimization problem is formulated and solved to guide the selection of the optimal reactor design among typical scenarios of operation. The optimization results suggest as optimal solution a reactor design with a preshift followed by a membrane reactor. The obtained optimal design enables a more efficient membrane use by placing it in the optimal location. This design also results in savings of as high as 25% (in the range of 10-25%) in terms of membrane material when compared to the original membrane reactor design. For the price range of zeolite membranes considered on the order of $1000-10 000/m2 and for large-scale applications, in which the membrane surface areas are on the order of 2000 m2, 25% of savings implies cost reductions on the order of millions of dollars (as high as $5 000 000 in this case). ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=25815826 One - pot synthesis of 5 - (Ethoxymethyl) furfural from glucose using Sn - BEA and amberlyst catalysts / Christopher M. Lew in Industrial & engineering chemistry research, Vol. 51 N° 14 (Avril 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 14 (Avril 2012) . - pp. 5364–5366
Titre : One - pot synthesis of 5 - (Ethoxymethyl) furfural from glucose using Sn - BEA and amberlyst catalysts Type de document : texte imprimé Auteurs : Christopher M. Lew, Auteur ; Nafiseh Rajabbeigi, Auteur ; Michael Tsapatsis, Auteur Année de publication : 2012 Article en page(s) : pp. 5364–5366 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Glucose Ethano Catalysts Résumé : 5-(Ethoxymethyl)furfural (EMF) was produced from glucose in ethanol in a single reactor at 90 °C. The reaction proceeds via the isomerization of glucose to fructose with zeolite Sn-Beta, a Lewis acid catalyst. Fructose is converted to 5-(hydroxymethyl)furfural, which is then etherified to EMF using a Brønsted acid catalyst, Amberlyst 131. An EMF yield of 31% was achieved. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie2025536 [article] One - pot synthesis of 5 - (Ethoxymethyl) furfural from glucose using Sn - BEA and amberlyst catalysts [texte imprimé] / Christopher M. Lew, Auteur ; Nafiseh Rajabbeigi, Auteur ; Michael Tsapatsis, Auteur . - 2012 . - pp. 5364–5366.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 14 (Avril 2012) . - pp. 5364–5366
Mots-clés : Glucose Ethano Catalysts Résumé : 5-(Ethoxymethyl)furfural (EMF) was produced from glucose in ethanol in a single reactor at 90 °C. The reaction proceeds via the isomerization of glucose to fructose with zeolite Sn-Beta, a Lewis acid catalyst. Fructose is converted to 5-(hydroxymethyl)furfural, which is then etherified to EMF using a Brønsted acid catalyst, Amberlyst 131. An EMF yield of 31% was achieved. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie2025536