Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Stephen T. McClain
Documents disponibles écrits par cet auteur
Affiner la rechercheProtuberances in a turbulent thermal boundary layer / Steven R. Mart in Journal of heat transfer, Vol. 134 N° 1 (Janvier 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 12 p.
Titre : Protuberances in a turbulent thermal boundary layer Type de document : texte imprimé Auteurs : Steven R. Mart, Auteur ; Stephen T. McClain, Auteur Année de publication : 2012 Article en page(s) : 12 p. Note générale : Heat transfer Langues : Anglais (eng) Mots-clés : Anemometry Blades Boundary layer turbulence Flow visualisation Heat transfer Infrared imaging Thermal conductivity Thermocouples Turbines Index. décimale : 536 Chaleur. Thermodynamique Résumé : Recent efforts to evaluate the effects of isolated protuberances within velocity and thermal boundary layers have been performed using transient heat transfer approaches. While these approaches provide accurate and highly resolved measurements of surface flux, measuring the state of the thermal boundary layer during transient tests with high spatial resolution presents several challenges. As such, the heat transfer enhancement evaluated during transient tests is presently correlated to a Reynolds number based either on the distance from the leading edge or on the momentum thickness. Heat flux and temperature variations along the surface of a turbine blade may cause significant differences between the shapes and sizes of the velocity and thermal boundary layer profiles. Therefore, correlations are needed which relate the states of both the velocity and thermal boundary layers to protuberance and roughness distribution heat transfer. In this study, a series of three experiments are performed for various freestream velocities to investigate the local temperature details of protuberances interacting with thermal boundary layers. The experimental measurements are performed using isolated protuberances of varying thermal conductivity on a steadily heated, constant flux flat plate. In the first experiment, detailed surface temperature maps are recorded using infrared thermography. In the second experiment, the unperturbed velocity profile over the plate without heating is measured using hot-wire anemometry. Finally, the thermal boundary layer over the steadily heated plate is measured using a thermocouple probe. Because of the constant flux experimental configuration, the protuberances provide negligible heat flux augmentation. Consequently, the variation in protuberance temperature is investigated using the velocity boundary layer parameters, the thermal boundary layer parameters, and the local fluid temperature at the protuberance apices. A comparison of results using plastic and steel protuberances illuminates the importance of the shape of the thermal and velocity boundary layers in determining the minimum protuberance temperatures. DEWEY : 536 ISSN : 0022-1481 En ligne : http://www.asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013400 [...] [article] Protuberances in a turbulent thermal boundary layer [texte imprimé] / Steven R. Mart, Auteur ; Stephen T. McClain, Auteur . - 2012 . - 12 p.
Heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 12 p.
Mots-clés : Anemometry Blades Boundary layer turbulence Flow visualisation Heat transfer Infrared imaging Thermal conductivity Thermocouples Turbines Index. décimale : 536 Chaleur. Thermodynamique Résumé : Recent efforts to evaluate the effects of isolated protuberances within velocity and thermal boundary layers have been performed using transient heat transfer approaches. While these approaches provide accurate and highly resolved measurements of surface flux, measuring the state of the thermal boundary layer during transient tests with high spatial resolution presents several challenges. As such, the heat transfer enhancement evaluated during transient tests is presently correlated to a Reynolds number based either on the distance from the leading edge or on the momentum thickness. Heat flux and temperature variations along the surface of a turbine blade may cause significant differences between the shapes and sizes of the velocity and thermal boundary layer profiles. Therefore, correlations are needed which relate the states of both the velocity and thermal boundary layers to protuberance and roughness distribution heat transfer. In this study, a series of three experiments are performed for various freestream velocities to investigate the local temperature details of protuberances interacting with thermal boundary layers. The experimental measurements are performed using isolated protuberances of varying thermal conductivity on a steadily heated, constant flux flat plate. In the first experiment, detailed surface temperature maps are recorded using infrared thermography. In the second experiment, the unperturbed velocity profile over the plate without heating is measured using hot-wire anemometry. Finally, the thermal boundary layer over the steadily heated plate is measured using a thermocouple probe. Because of the constant flux experimental configuration, the protuberances provide negligible heat flux augmentation. Consequently, the variation in protuberance temperature is investigated using the velocity boundary layer parameters, the thermal boundary layer parameters, and the local fluid temperature at the protuberance apices. A comparison of results using plastic and steel protuberances illuminates the importance of the shape of the thermal and velocity boundary layers in determining the minimum protuberance temperatures. DEWEY : 536 ISSN : 0022-1481 En ligne : http://www.asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013400 [...]