Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Andreas Rossoll
Documents disponibles écrits par cet auteur
Affiner la rechercheFracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress / Aude Hauert in Acta materialia, Vol. 58 N° 11 (Juin 2010)
[article]
in Acta materialia > Vol. 58 N° 11 (Juin 2010) . - pp. 3895–3907
Titre : Fracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress Type de document : texte imprimé Auteurs : Aude Hauert, Auteur ; Andreas Rossoll, Auteur ; Andreas Mortensen, Auteur Année de publication : 2011 Article en page(s) : pp. 3895–3907 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Metal matrix composites (MMC) Particulate reinforced composites Fracture Mean field analysis Stress triaxiality Résumé : Circumferentially notched cylindrical bars of high volume fraction Al2O3 particle reinforced aluminium are tested in tension to probe the role of tensile stress triaxiality on damage and failure of such materials. The transverse strain is monitored with a specially designed video extensometer. A significant dependence of the peak average stress and failure strain on notch radius is observed. Finite-element simulations of the tests are conducted on the basis of a micromechanical model derived from earlier studies of damage and failure of these composites under uniaxial tensile deformation (Journal of the Mechanics and Physics of Solids 2009;57:1781). The simulations show that stress and strain distributions within the notched composite samples deviate significantly from predictions of Bridgman’s simplified analysis. Comparison with data shows that, whereas calculations capture satisfactorily the evolution of the average composite flow stress as a function of notch radius at small strains, the notched samples damage faster and fail at strains lower than predicted. Two phenomena may explain the discrepancy, namely (i) damage coalescence beyond a threshold level, and (ii) the incapacity of the matrix to sustain large hydrostatic stresses, which results from the presence of internal surfaces (cracked particles and possibly matrix voiding). DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410001928 [article] Fracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress [texte imprimé] / Aude Hauert, Auteur ; Andreas Rossoll, Auteur ; Andreas Mortensen, Auteur . - 2011 . - pp. 3895–3907.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 11 (Juin 2010) . - pp. 3895–3907
Mots-clés : Metal matrix composites (MMC) Particulate reinforced composites Fracture Mean field analysis Stress triaxiality Résumé : Circumferentially notched cylindrical bars of high volume fraction Al2O3 particle reinforced aluminium are tested in tension to probe the role of tensile stress triaxiality on damage and failure of such materials. The transverse strain is monitored with a specially designed video extensometer. A significant dependence of the peak average stress and failure strain on notch radius is observed. Finite-element simulations of the tests are conducted on the basis of a micromechanical model derived from earlier studies of damage and failure of these composites under uniaxial tensile deformation (Journal of the Mechanics and Physics of Solids 2009;57:1781). The simulations show that stress and strain distributions within the notched composite samples deviate significantly from predictions of Bridgman’s simplified analysis. Comparison with data shows that, whereas calculations capture satisfactorily the evolution of the average composite flow stress as a function of notch radius at small strains, the notched samples damage faster and fail at strains lower than predicted. Two phenomena may explain the discrepancy, namely (i) damage coalescence beyond a threshold level, and (ii) the incapacity of the matrix to sustain large hydrostatic stresses, which results from the presence of internal surfaces (cracked particles and possibly matrix voiding). DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410001928