Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yunqiang Jiao
Documents disponibles écrits par cet auteur
Affiner la rechercheA Multiperiod optimization model for hydrogen system scheduling in refinery / Yunqiang Jiao in Industrial & engineering chemistry research, Vol. 51 N° 17 (Mai 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 17 (Mai 2012) . - pp. 6085–6098
Titre : A Multiperiod optimization model for hydrogen system scheduling in refinery Type de document : texte imprimé Auteurs : Yunqiang Jiao, Auteur ; Hongye Su, Auteur ; Weifeng Hou, Auteur Année de publication : 2012 Article en page(s) : pp. 6085–6098 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Hydrogenation process Résumé : In a refinery, hydrogen, as a valuable resource, is also a byproduct and a significant raw material source of the petroleum refining and petrochemical hydrogenation process. To reduce costs and save energy for the petrochemical industry, the hydrogen system in a refinery should be operated under the optimal scheme to meet the varying hydrogen demands of hydrogen consumers. Optimal scheduling of the hydrogen system can help a refinery to achieve cost reduction and cleaner production. In this paper, a discrete-time mixed-integer nonlinear programming (MINLP) model that considers the penalties for abnormal situations in the hydrogen pipe network (HPN), compressors start–stop, and changes in hydrogen sources for hydrogen consumers is proposed for the optimal scheduling of the hydrogen system under multiperiod operation. The solution of the scheduling problem is obtained based on an iterative method between that of a mixed-integer linear programming (MILP) problem and that of a nonlinear programming (NLP) problem, avoiding the solution of the MINLP problem directly and the occurrence of composition discrepancy. A case study based on the data from a real refinery is presented to illustrate the effectiveness and feasibility of the proposed methodology. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie2019239 [article] A Multiperiod optimization model for hydrogen system scheduling in refinery [texte imprimé] / Yunqiang Jiao, Auteur ; Hongye Su, Auteur ; Weifeng Hou, Auteur . - 2012 . - pp. 6085–6098.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 17 (Mai 2012) . - pp. 6085–6098
Mots-clés : Hydrogenation process Résumé : In a refinery, hydrogen, as a valuable resource, is also a byproduct and a significant raw material source of the petroleum refining and petrochemical hydrogenation process. To reduce costs and save energy for the petrochemical industry, the hydrogen system in a refinery should be operated under the optimal scheme to meet the varying hydrogen demands of hydrogen consumers. Optimal scheduling of the hydrogen system can help a refinery to achieve cost reduction and cleaner production. In this paper, a discrete-time mixed-integer nonlinear programming (MINLP) model that considers the penalties for abnormal situations in the hydrogen pipe network (HPN), compressors start–stop, and changes in hydrogen sources for hydrogen consumers is proposed for the optimal scheduling of the hydrogen system under multiperiod operation. The solution of the scheduling problem is obtained based on an iterative method between that of a mixed-integer linear programming (MILP) problem and that of a nonlinear programming (NLP) problem, avoiding the solution of the MINLP problem directly and the occurrence of composition discrepancy. A case study based on the data from a real refinery is presented to illustrate the effectiveness and feasibility of the proposed methodology. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie2019239