Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur H.P. Degischer
Documents disponibles écrits par cet auteur
Affiner la rechercheReinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum / M. Schöbel in Acta materialia, Vol. 58 N° 19 (Novembre 2010)
[article]
in Acta materialia > Vol. 58 N° 19 (Novembre 2010) . - pp. 6421–6430
Titre : Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum Type de document : texte imprimé Auteurs : M. Schöbel, Auteur ; H.P. Degischer, Auteur ; S. Vaucher, Auteur Année de publication : 2011 Article en page(s) : pp. 6421–6430 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Particulate reinforced composites Neutron diffraction Synchrotron radiation computed tomography Thermal cycling Internal stresses Résumé : Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC ≈ 1000 W mK−1) and low coefficient thermal expansion (CTE ≈ 1 ppm K−1). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile α-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 °C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond–Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410005082 [article] Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum [texte imprimé] / M. Schöbel, Auteur ; H.P. Degischer, Auteur ; S. Vaucher, Auteur . - 2011 . - pp. 6421–6430.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 19 (Novembre 2010) . - pp. 6421–6430
Mots-clés : Particulate reinforced composites Neutron diffraction Synchrotron radiation computed tomography Thermal cycling Internal stresses Résumé : Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC ≈ 1000 W mK−1) and low coefficient thermal expansion (CTE ≈ 1 ppm K−1). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile α-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 °C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond–Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410005082