Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur H. Men
Documents disponibles écrits par cet auteur
Affiner la rechercheMechanisms of grain refinement by intensive shearing of AZ91 alloy melt / H. Men in Acta materialia, Vol. 58 N° 19 (Novembre 2010)
[article]
in Acta materialia > Vol. 58 N° 19 (Novembre 2010) . - pp. 6526–6534
Titre : Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt Type de document : texte imprimé Auteurs : H. Men, Auteur ; B. Jiang, Auteur ; Z. Fan, Auteur Année de publication : 2011 Article en page(s) : pp. 6526–6534 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Nucleation Oxide Grain refinement Magnesium alloy Résumé : It has been demonstrated recently that intensive melt shearing can be an effective approach to the grain refinement of both shape casting and continuous casting of Mg alloys. In the present study, the mechanisms of grain refinement by intensive melt shearing were investigated through a combination of both modelling and experimental approaches. The measurement of the cooling curves during solidification, quantification of grain size of the solidified samples, and image analysis of the MgO particle size and size distribution in the pressurized filtration samples were performed for the AZ91 alloy with and without intensive melt shearing. The experimental results were then used as input parameters for the free growth model to investigate the mechanisms of grain refinement by intensive melt shearing. The experimental results showed that, although intensive melt shearing does not change the nucleation starting temperature, it increases the nucleation finishing temperature, giving rise to a reduced nucleation undercooling. The theoretical modelling using the free growth model revealed quantitatively that intensive melt shearing can effectively disperse MgO particles densely populated in the oxide films into more individual particles in the alloy melt, resulting in an increase in the MgO particle density by three orders of magnitude and the density of active nucleating MgO particles by a factor of 20 compared with those of the non-sheared melt. Therefore, the grain refining effect of intensive melt shearing can be confidently attributed to the significantly increased refining efficiency of the naturally occurring MgO particles in the alloy melt as potent nucleation sites. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410005306 [article] Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt [texte imprimé] / H. Men, Auteur ; B. Jiang, Auteur ; Z. Fan, Auteur . - 2011 . - pp. 6526–6534.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 19 (Novembre 2010) . - pp. 6526–6534
Mots-clés : Nucleation Oxide Grain refinement Magnesium alloy Résumé : It has been demonstrated recently that intensive melt shearing can be an effective approach to the grain refinement of both shape casting and continuous casting of Mg alloys. In the present study, the mechanisms of grain refinement by intensive melt shearing were investigated through a combination of both modelling and experimental approaches. The measurement of the cooling curves during solidification, quantification of grain size of the solidified samples, and image analysis of the MgO particle size and size distribution in the pressurized filtration samples were performed for the AZ91 alloy with and without intensive melt shearing. The experimental results were then used as input parameters for the free growth model to investigate the mechanisms of grain refinement by intensive melt shearing. The experimental results showed that, although intensive melt shearing does not change the nucleation starting temperature, it increases the nucleation finishing temperature, giving rise to a reduced nucleation undercooling. The theoretical modelling using the free growth model revealed quantitatively that intensive melt shearing can effectively disperse MgO particles densely populated in the oxide films into more individual particles in the alloy melt, resulting in an increase in the MgO particle density by three orders of magnitude and the density of active nucleating MgO particles by a factor of 20 compared with those of the non-sheared melt. Therefore, the grain refining effect of intensive melt shearing can be confidently attributed to the significantly increased refining efficiency of the naturally occurring MgO particles in the alloy melt as potent nucleation sites. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410005306