Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Graham G. W. Mustoe
Documents disponibles écrits par cet auteur
Affiner la rechercheUnderstanding the soil contact problem for the LWD and static drum roller by using the DEM / Scott R. Buechler in Journal of engineering mechanics, Vol. 138 N° 1 (Janvier 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 1 (Janvier 2012) . - pp.124-132
Titre : Understanding the soil contact problem for the LWD and static drum roller by using the DEM Type de document : texte imprimé Auteurs : Scott R. Buechler, Auteur ; Graham G. W. Mustoe, Auteur ; John R. Berger, Auteur Année de publication : 2012 Article en page(s) : pp.124-132 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Discrete element method, Soil compaction, Contact stress, Light weight deflectometer Drum roller Granular materials Résumé : The estimation of the elastic soil modulus from many in situ field test devices currently rely on the continuum theory and assumptions about linear elasticity that are somewhat ill-posed. To improve the understanding of in situ field measurement of elastic modulus using intelligent roller compactors and light-weight deflectometers (LWDs), a complete understanding of the contact problems formed through the use of these devices is needed for a wide range of soils. The varying material properties of cohesionless and cohesive soils can have dramatic effects on the assumed stress distributions, contact areas, and surface deformations. Investigations are conducted by using the discrete-element method (DEM) to investigate the relationships between soil properties and the mechanical responses for both plate (simulated LWD) and drum-roller loading. Simulations of purely cohesionless granular soils are shown to exhibit substantially different stress and strain fields compared to simulations of cohesive soils. This paper demonstrates the ability of DEM to accurately model macroscale features from variable microstructure and interactions. Comparisons between finite element models and predictions are made for soils with varying abilities to transmit tensile forces. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000310 [article] Understanding the soil contact problem for the LWD and static drum roller by using the DEM [texte imprimé] / Scott R. Buechler, Auteur ; Graham G. W. Mustoe, Auteur ; John R. Berger, Auteur . - 2012 . - pp.124-132.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 1 (Janvier 2012) . - pp.124-132
Mots-clés : Discrete element method, Soil compaction, Contact stress, Light weight deflectometer Drum roller Granular materials Résumé : The estimation of the elastic soil modulus from many in situ field test devices currently rely on the continuum theory and assumptions about linear elasticity that are somewhat ill-posed. To improve the understanding of in situ field measurement of elastic modulus using intelligent roller compactors and light-weight deflectometers (LWDs), a complete understanding of the contact problems formed through the use of these devices is needed for a wide range of soils. The varying material properties of cohesionless and cohesive soils can have dramatic effects on the assumed stress distributions, contact areas, and surface deformations. Investigations are conducted by using the discrete-element method (DEM) to investigate the relationships between soil properties and the mechanical responses for both plate (simulated LWD) and drum-roller loading. Simulations of purely cohesionless granular soils are shown to exhibit substantially different stress and strain fields compared to simulations of cohesive soils. This paper demonstrates the ability of DEM to accurately model macroscale features from variable microstructure and interactions. Comparisons between finite element models and predictions are made for soils with varying abilities to transmit tensile forces. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000310