[article] in Techniques de l'ingénieur AFM > Vol. AFM4 (Trimestriel) . - 1-28 p. Titre : | Méthodes de décomposition de domaines : notions de base | Type de document : | texte imprimé | Auteurs : | Gander, Martin J., Auteur ; Halpern, Laurence, Auteur | Année de publication : | 2010 | Article en page(s) : | 1-28 p. | Note générale : | Mathématiques pour l'ingénieur | Langues : | Français (fre) | Mots-clés : | Méthode de décompositionMéthodes d’approximation | Résumé : | Tous les problèmes d’ingénierie aujourd’hui sont résolus en parallèle sur des ordinateurs composés de centaines, voire des milliers de noeuds de calcul. Cet article se propose d’exposer les méthodes de décomposition de domaine susceptibles de s’appliquer à ces nouveaux outils. Emile Picard nous enseigne dans [— - Sur l’application des méthodes d’approximations successives à l’étude de certaines équations différentielles ordinaires] que pour comprendre une théorie, il est bon d’avoir en tête un problème modèle.
Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de s’appliquer à toute équation, mais elles ne deviennent vraiment intéressantes pour l’étude des propriétés des fonctions définies par les équations différentielles que si l’on ne reste pas dans les généralités et si l’on envisage certaines classes d’équations.
Nous choisirons donc dans tout cet exposé un fil conducteur, l’équation de la chaleur
(1)
représentant les variations en temps et en espace de la température d’un corps emplissant le domaine Ω, soumis à une source de chaleur f (qui sera appelée second membre), avec une température initiale donnée dans tout le domaine, et des conditions aux limites sur le bord du domaine ∂Ω, par exemple de Dirichlet (la température est fixée), soit u = g. ∂tu est la dérivée en temps de u, Δ est l’opérateur de Laplace, Δu = ∂11u + ∂22u + ∂33u. Pour calculer sur un ordinateur une solution approchée de cette équation, on peut commencer par une semi-discrétisation en temps. Le schéma le plus simple est le schéma d’Euler implicite (voir [AF 1 220]). Partageons l’intervalle de temps [0, T] en sous-intervalles [tn, tn+1] de longueur Δt. Notons un(x) l’approximation de u à l’instant tn au point x, calculée par la formule de récurrence
où fn+1 représente f (x, tn+1). Pour passer du temps tn au temps tn+1, il faut donc résoudre l’équation elliptique
dans le domaine Ω, où f est maintenant une fonction indépendante du temps.
La discrétisation en espace de cette équation par une méthode de type éléments finis ou volumes finis mène à un système linéaire (voir [AF 500] et [AF 503]). Lorsque la taille du domaine de calcul est très grande, ou la discrétisation très fine, la taille du système linéaire excède les capacités de stockage et de calcul d’un seul ordinateur, si puissant soit-il. L’idée la plus simple pour remédier à ce problème est de décomposer le système linéaire en sous-systèmes, dont chacun est suffisamment petit pour être résolu très rapidement sur un nœud d’un système d’ordinateurs (divide et impera). Cela peut se faire au niveau purement informatique, mais il est plus fructueux de revenir en amont et de développer une stratégie au niveau du problème mathématique. Cette démarche est souvent réclamée par la géométrie elle-même (assemblage de structures par exemple). Le domaine de calcul est alors partagé en sous-domaines, chacun assigné à un nœud de la grappe de calcul. Les échanges entres les sous-domaines sont effectués par des conditions de transmission et traduits par des échanges entre les processeurs. La résolution du problème de départ est alors réalisée en itérant entre les sous-domaines, et les sous-domaines peuvent même être en espace-temps.
Toutes ces méthodes sont des méthodes de décomposition de domaines. Elles ont pour fondateur H.A. Schwarz qui en écrivit une première version en 1870 [SCHWARZ (H.A.) - Über einen Grenzübergang durch alternierendes Verfahren] . Elles ont donné lieu à une intense activité scientifique depuis l’avènement des calculateurs parallèles. Elles sont utilisées pour des calculs de pneumatiques, d’automobiles, de structures sismiques, de navette spatiale, de reconnaissance de forme, d’environnement, de météorologie, d’astrophysique, de médecine, et tant d’autres.
Leur champ d’utilisation est même plus large : si par exemple le modèle a des propriétés physiques différentes dans différentes parties du domaine, les méthodes de décomposition de domaines sont un outil naturel pour leur traitement. Mentionnons par exemple la jonction d’une poutre et d’une plaque, le couplage entre l’océan et l’atmosphè | Note de contenu : | Bibliogr. Doc. AF1375 | REFERENCE : | AF 1 375 | ISSN : | 1776-0860 | Date : | Avril 2012 | En ligne : | http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] |
[article] Méthodes de décomposition de domaines : notions de base [texte imprimé] / Gander, Martin J., Auteur ; Halpern, Laurence, Auteur . - 2010 . - 1-28 p. Mathématiques pour l'ingénieur Langues : Français ( fre) in Techniques de l'ingénieur AFM > Vol. AFM4 (Trimestriel) . - 1-28 p. Mots-clés : | Méthode de décompositionMéthodes d’approximation | Résumé : | Tous les problèmes d’ingénierie aujourd’hui sont résolus en parallèle sur des ordinateurs composés de centaines, voire des milliers de noeuds de calcul. Cet article se propose d’exposer les méthodes de décomposition de domaine susceptibles de s’appliquer à ces nouveaux outils. Emile Picard nous enseigne dans [— - Sur l’application des méthodes d’approximations successives à l’étude de certaines équations différentielles ordinaires] que pour comprendre une théorie, il est bon d’avoir en tête un problème modèle.
Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de s’appliquer à toute équation, mais elles ne deviennent vraiment intéressantes pour l’étude des propriétés des fonctions définies par les équations différentielles que si l’on ne reste pas dans les généralités et si l’on envisage certaines classes d’équations.
Nous choisirons donc dans tout cet exposé un fil conducteur, l’équation de la chaleur
(1)
représentant les variations en temps et en espace de la température d’un corps emplissant le domaine Ω, soumis à une source de chaleur f (qui sera appelée second membre), avec une température initiale donnée dans tout le domaine, et des conditions aux limites sur le bord du domaine ∂Ω, par exemple de Dirichlet (la température est fixée), soit u = g. ∂tu est la dérivée en temps de u, Δ est l’opérateur de Laplace, Δu = ∂11u + ∂22u + ∂33u. Pour calculer sur un ordinateur une solution approchée de cette équation, on peut commencer par une semi-discrétisation en temps. Le schéma le plus simple est le schéma d’Euler implicite (voir [AF 1 220]). Partageons l’intervalle de temps [0, T] en sous-intervalles [tn, tn+1] de longueur Δt. Notons un(x) l’approximation de u à l’instant tn au point x, calculée par la formule de récurrence
où fn+1 représente f (x, tn+1). Pour passer du temps tn au temps tn+1, il faut donc résoudre l’équation elliptique
dans le domaine Ω, où f est maintenant une fonction indépendante du temps.
La discrétisation en espace de cette équation par une méthode de type éléments finis ou volumes finis mène à un système linéaire (voir [AF 500] et [AF 503]). Lorsque la taille du domaine de calcul est très grande, ou la discrétisation très fine, la taille du système linéaire excède les capacités de stockage et de calcul d’un seul ordinateur, si puissant soit-il. L’idée la plus simple pour remédier à ce problème est de décomposer le système linéaire en sous-systèmes, dont chacun est suffisamment petit pour être résolu très rapidement sur un nœud d’un système d’ordinateurs (divide et impera). Cela peut se faire au niveau purement informatique, mais il est plus fructueux de revenir en amont et de développer une stratégie au niveau du problème mathématique. Cette démarche est souvent réclamée par la géométrie elle-même (assemblage de structures par exemple). Le domaine de calcul est alors partagé en sous-domaines, chacun assigné à un nœud de la grappe de calcul. Les échanges entres les sous-domaines sont effectués par des conditions de transmission et traduits par des échanges entre les processeurs. La résolution du problème de départ est alors réalisée en itérant entre les sous-domaines, et les sous-domaines peuvent même être en espace-temps.
Toutes ces méthodes sont des méthodes de décomposition de domaines. Elles ont pour fondateur H.A. Schwarz qui en écrivit une première version en 1870 [SCHWARZ (H.A.) - Über einen Grenzübergang durch alternierendes Verfahren] . Elles ont donné lieu à une intense activité scientifique depuis l’avènement des calculateurs parallèles. Elles sont utilisées pour des calculs de pneumatiques, d’automobiles, de structures sismiques, de navette spatiale, de reconnaissance de forme, d’environnement, de météorologie, d’astrophysique, de médecine, et tant d’autres.
Leur champ d’utilisation est même plus large : si par exemple le modèle a des propriétés physiques différentes dans différentes parties du domaine, les méthodes de décomposition de domaines sont un outil naturel pour leur traitement. Mentionnons par exemple la jonction d’une poutre et d’une plaque, le couplage entre l’océan et l’atmosphè | Note de contenu : | Bibliogr. Doc. AF1375 | REFERENCE : | AF 1 375 | ISSN : | 1776-0860 | Date : | Avril 2012 | En ligne : | http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] |
|