Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur S. R. Nielsen
Documents disponibles écrits par cet auteur
Affiner la rechercheFailure probability estimation of wind turbines by enhanced monte carlo method / M. T. Sichani in Journal of engineering mechanics, Vol. 138 N° 4 (Avril 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 4 (Avril 2012) . - pp.379-389
Titre : Failure probability estimation of wind turbines by enhanced monte carlo method Type de document : texte imprimé Auteurs : M. T. Sichani, Auteur ; S. R. Nielsen, Auteur ; Arvid Naess, Auteur Année de publication : 2012 Article en page(s) : pp.379-389 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Wind turbine Pitch controller Reliability analysis Return period Résumé : This paper discusses the estimation of the failure probability of wind turbines required by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations may be used for this reason conceptually as an alternative to the popular Peaks-Over-Threshold (POT) method. However, estimation of very low failure probabilities with SMC simulations leads to unacceptably high computational costs. In this study, an Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The method has advantages over both POT and SMC in terms of its low computational cost and accuracy. The method is applied to a low-order numerical model of a 5 MW wind turbine with a pitch controller exposed to a turbulent inflow. Two cases of the wind turbine model are investigated. In the first case, the rotor is running with a constant rotational speed. In the second case, the variable rotational speed is controlled by the pitch controller. This provides a fair framework for comparison of the behavior and failure event of the wind turbine with emphasis on the effect of the pitch controller. The Enhanced Monte Carlo method is then applied to the model and the failure probabilities of the model are estimated to the values related to the required 50-year return period of the wind turbine. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000334 [article] Failure probability estimation of wind turbines by enhanced monte carlo method [texte imprimé] / M. T. Sichani, Auteur ; S. R. Nielsen, Auteur ; Arvid Naess, Auteur . - 2012 . - pp.379-389.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 4 (Avril 2012) . - pp.379-389
Mots-clés : Wind turbine Pitch controller Reliability analysis Return period Résumé : This paper discusses the estimation of the failure probability of wind turbines required by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations may be used for this reason conceptually as an alternative to the popular Peaks-Over-Threshold (POT) method. However, estimation of very low failure probabilities with SMC simulations leads to unacceptably high computational costs. In this study, an Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The method has advantages over both POT and SMC in terms of its low computational cost and accuracy. The method is applied to a low-order numerical model of a 5 MW wind turbine with a pitch controller exposed to a turbulent inflow. Two cases of the wind turbine model are investigated. In the first case, the rotor is running with a constant rotational speed. In the second case, the variable rotational speed is controlled by the pitch controller. This provides a fair framework for comparison of the behavior and failure event of the wind turbine with emphasis on the effect of the pitch controller. The Enhanced Monte Carlo method is then applied to the model and the failure probabilities of the model are estimated to the values related to the required 50-year return period of the wind turbine. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000334