Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Stefano Bennati
Documents disponibles écrits par cet auteur
Affiner la rechercheEquilibrium of pointed, circular, and elliptical masonry arches bearing vertical walls / Danila Aita in Journal of structural engineering, Vol. 138 N° 7 (Juillet 2012)
[article]
in Journal of structural engineering > Vol. 138 N° 7 (Juillet 2012) . - pp. 880–888
Titre : Equilibrium of pointed, circular, and elliptical masonry arches bearing vertical walls Type de document : texte imprimé Auteurs : Danila Aita, Auteur ; Riccardo Barsotti, Auteur ; Stefano Bennati, Auteur Année de publication : 2012 Article en page(s) : pp. 880–888 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Pointed Circular Elliptical masonry arches Masonry walls Limit analysis Nonlinear elastic analysis Durand-Claye’s stability area method Construction history Résumé : This paper addresses the long-standing problem of the equilibrium of the circular, pointed, and elliptical arches commonly found in historical masonry buildings and bridges that are subjected to their own weight and the weight of superimposed masonry walls. The equilibrium problem is studied by applying two different complementary methods: the first is a simple extension and analytical re-reading of the Durand-Claye stability area method; the second is based on the application of a nonlinear elastic one-dimensional model, already used by the authors in previous studies. It is assumed that the arch’s constituent material has limited compressive strength and null tensile strength. In addition, the load transferred to the arch by the wall is determined under the common assumption that each vertical strip of wall bears directly down on the underlying arch element. The study focuses on the maximum height that the superimposed wall can reach under equilibrium conditions while maintaining acceptable values of arch residual stiffness. One noteworthy finding is confirmation of the decidedly better behavior of pointed and elliptical flat arches compared with that of circular arches. ISSN : 0733-9445 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0000522 [article] Equilibrium of pointed, circular, and elliptical masonry arches bearing vertical walls [texte imprimé] / Danila Aita, Auteur ; Riccardo Barsotti, Auteur ; Stefano Bennati, Auteur . - 2012 . - pp. 880–888.
Génie Civil
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 138 N° 7 (Juillet 2012) . - pp. 880–888
Mots-clés : Pointed Circular Elliptical masonry arches Masonry walls Limit analysis Nonlinear elastic analysis Durand-Claye’s stability area method Construction history Résumé : This paper addresses the long-standing problem of the equilibrium of the circular, pointed, and elliptical arches commonly found in historical masonry buildings and bridges that are subjected to their own weight and the weight of superimposed masonry walls. The equilibrium problem is studied by applying two different complementary methods: the first is a simple extension and analytical re-reading of the Durand-Claye stability area method; the second is based on the application of a nonlinear elastic one-dimensional model, already used by the authors in previous studies. It is assumed that the arch’s constituent material has limited compressive strength and null tensile strength. In addition, the load transferred to the arch by the wall is determined under the common assumption that each vertical strip of wall bears directly down on the underlying arch element. The study focuses on the maximum height that the superimposed wall can reach under equilibrium conditions while maintaining acceptable values of arch residual stiffness. One noteworthy finding is confirmation of the decidedly better behavior of pointed and elliptical flat arches compared with that of circular arches. ISSN : 0733-9445 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0000522