Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Saurabh Y. Joshi
Documents disponibles écrits par cet auteur
Affiner la rechercheExperimental and theoretical investigation of controlling regimes during lean oxidation of methane and propylene on Pt /Al2O3 monolithic reactors / Saurabh Y. Joshi in Industrial & engineering chemistry research, Vol. 51 N° 22 (Juin 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 22 (Juin 2012) . - pp. 7482–7492
Titre : Experimental and theoretical investigation of controlling regimes during lean oxidation of methane and propylene on Pt /Al2O3 monolithic reactors Type de document : texte imprimé Auteurs : Saurabh Y. Joshi, Auteur ; Yongjie Ren, Auteur ; Michael P. Harold, Auteur Année de publication : 2012 Article en page(s) : pp. 7482–7492 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Controlling regimes Oxidation methane Résumé : The performance of a catalytic reactor is bounded by the kinetic regime at low temperature (or before light-off) and the mass-transfer-controlled regime at high temperature. Pore diffusion may also be significant at intermediate temperature. We utilize the recently developed criteria (Joshi, S. Y.; Harold, M. P.; Balakotaiah, V. Chem. Eng. Sci.2010, 65, 1729–1747) to characterize the controlling regimes during lean oxidation of CH4 and C3H6 in Pt/Al2O3 monolithic reactors. First, we determine the global kinetics of lean oxidation of CH4 and C3H6 in a Pt/Al2O3 monolithic catalyst. We also present a method for estimation of the effective diffusivity of the limiting reactant and the external mass-transfer coefficient under reacting conditions. Further, we characterize the relative contributions of chemical kinetics, washcoat diffusion, and external mass transfer as a function of the various catalyst design and operating parameters. The analysis reveals that methane oxidation is kinetically controlled over a wide range of temperatures (350–600 °C) whereas propylene oxidation has a more classical transition between the kinetic and mass-transfer-controlled regimes. We use the bench-scale results to analyze the impact of various design and operating variables on transitions between the controlling regimes. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie201653e [article] Experimental and theoretical investigation of controlling regimes during lean oxidation of methane and propylene on Pt /Al2O3 monolithic reactors [texte imprimé] / Saurabh Y. Joshi, Auteur ; Yongjie Ren, Auteur ; Michael P. Harold, Auteur . - 2012 . - pp. 7482–7492.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 22 (Juin 2012) . - pp. 7482–7492
Mots-clés : Controlling regimes Oxidation methane Résumé : The performance of a catalytic reactor is bounded by the kinetic regime at low temperature (or before light-off) and the mass-transfer-controlled regime at high temperature. Pore diffusion may also be significant at intermediate temperature. We utilize the recently developed criteria (Joshi, S. Y.; Harold, M. P.; Balakotaiah, V. Chem. Eng. Sci.2010, 65, 1729–1747) to characterize the controlling regimes during lean oxidation of CH4 and C3H6 in Pt/Al2O3 monolithic reactors. First, we determine the global kinetics of lean oxidation of CH4 and C3H6 in a Pt/Al2O3 monolithic catalyst. We also present a method for estimation of the effective diffusivity of the limiting reactant and the external mass-transfer coefficient under reacting conditions. Further, we characterize the relative contributions of chemical kinetics, washcoat diffusion, and external mass transfer as a function of the various catalyst design and operating parameters. The analysis reveals that methane oxidation is kinetically controlled over a wide range of temperatures (350–600 °C) whereas propylene oxidation has a more classical transition between the kinetic and mass-transfer-controlled regimes. We use the bench-scale results to analyze the impact of various design and operating variables on transitions between the controlling regimes. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie201653e