Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. Mitsos
Documents disponibles écrits par cet auteur
Affiner la rechercheA multiple - compartment ion - transport - membrane reactive oxygen separator / N. D. Mancini in Industrial & engineering chemistry research, Vol. 51 N° 23 (Juin 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 23 (Juin 2012) . - pp. 7988–7997
Titre : A multiple - compartment ion - transport - membrane reactive oxygen separator Type de document : texte imprimé Auteurs : N. D. Mancini, Auteur ; S. Gunasekaran, Auteur ; A. Mitsos, Auteur Année de publication : 2012 Article en page(s) : pp. 7988–7997 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Ion Transport membrane Résumé : Oxy-combustion using an integrated oxygen ion-transport membrane (ITM) could substantially improve the thermodynamic performance of power plants with carbon capture and sequestration (CCS). In a reactive ITM, fuel is burned inside the unit to enhance the oxygen partial pressure driving force, thus reducing the reactor membrane material required, compared to nonreactive ITM applications. The multiple-compartment reactive ion-transport membrane (MCRI) concept proposed herein mitigates key drawbacks of the reactive ITM and improves the performance by dividing the overall ITM into stages with individual input streams in a serial arrangement. This arrangement enables more-effective thermal management of the ITM and, thus, higher average oxygen permeation flux. Consequently, the pressure drop and size (volume/surface area) are significantly reduced, compared to conventional reactive ITM designs. The MCRI is modeled and simulated in ASPEN Plus, using multiple instances of an intermediate-fidelity ITM model that captures all relevant physical processes. The simulation results indicate that a power cycle using an integrated MCRI could significantly improve the economic viability of oxy-combustion CCS power plants. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202433g [article] A multiple - compartment ion - transport - membrane reactive oxygen separator [texte imprimé] / N. D. Mancini, Auteur ; S. Gunasekaran, Auteur ; A. Mitsos, Auteur . - 2012 . - pp. 7988–7997.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 23 (Juin 2012) . - pp. 7988–7997
Mots-clés : Ion Transport membrane Résumé : Oxy-combustion using an integrated oxygen ion-transport membrane (ITM) could substantially improve the thermodynamic performance of power plants with carbon capture and sequestration (CCS). In a reactive ITM, fuel is burned inside the unit to enhance the oxygen partial pressure driving force, thus reducing the reactor membrane material required, compared to nonreactive ITM applications. The multiple-compartment reactive ion-transport membrane (MCRI) concept proposed herein mitigates key drawbacks of the reactive ITM and improves the performance by dividing the overall ITM into stages with individual input streams in a serial arrangement. This arrangement enables more-effective thermal management of the ITM and, thus, higher average oxygen permeation flux. Consequently, the pressure drop and size (volume/surface area) are significantly reduced, compared to conventional reactive ITM designs. The MCRI is modeled and simulated in ASPEN Plus, using multiple instances of an intermediate-fidelity ITM model that captures all relevant physical processes. The simulation results indicate that a power cycle using an integrated MCRI could significantly improve the economic viability of oxy-combustion CCS power plants. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202433g