Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur K. Y. Huang
Documents disponibles écrits par cet auteur
Affiner la rechercheA heuristic approach to classifying labeled/unlabeled data sets / K. Y. Huang in Journal of the operational research society (JORS), Vol. 63 N° 9 (Septembre 2012)
[article]
in Journal of the operational research society (JORS) > Vol. 63 N° 9 (Septembre 2012) . - pp. 1248–1257
Titre : A heuristic approach to classifying labeled/unlabeled data sets Type de document : texte imprimé Auteurs : K. Y. Huang, Auteur Année de publication : 2012 Article en page(s) : pp. 1248–1257 Note générale : Operational research Langues : Anglais (eng) Mots-clés : Optimization Decision analysis Variable precision rough set MVPRS-index method Classification Index. décimale : 001.424 Résumé : A classification method, which comprises Fuzzy C-Means method, a modified form of the Huang-index function and Variable Precision Rough Set (VPRS) theory, is proposed for classifying labeled/unlabeled data sets in this study. This proposed method, designated as the MVPRS-index method, is used to partition the values of per conditional attribute within the data set and to achieve both the optimal number of clusters and the optimal accuracy of VPRS classification. The validity of the proposed approach is confirmed by comparing the classification results obtained from the MVPRS-index method for UCI data sets and a typical stock market data set with those obtained from the supervised neural networks classification method. Overall, the results show that the MVPRS-index method could be applied to data sets not only with labeled information but also with unlabeled information, and therefore provides a more reliable basis for the extraction of decision-making rules of labeled/unlabeled datasets. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v63/n9/abs/jors2011103a.html [article] A heuristic approach to classifying labeled/unlabeled data sets [texte imprimé] / K. Y. Huang, Auteur . - 2012 . - pp. 1248–1257.
Operational research
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 63 N° 9 (Septembre 2012) . - pp. 1248–1257
Mots-clés : Optimization Decision analysis Variable precision rough set MVPRS-index method Classification Index. décimale : 001.424 Résumé : A classification method, which comprises Fuzzy C-Means method, a modified form of the Huang-index function and Variable Precision Rough Set (VPRS) theory, is proposed for classifying labeled/unlabeled data sets in this study. This proposed method, designated as the MVPRS-index method, is used to partition the values of per conditional attribute within the data set and to achieve both the optimal number of clusters and the optimal accuracy of VPRS classification. The validity of the proposed approach is confirmed by comparing the classification results obtained from the MVPRS-index method for UCI data sets and a typical stock market data set with those obtained from the supervised neural networks classification method. Overall, the results show that the MVPRS-index method could be applied to data sets not only with labeled information but also with unlabeled information, and therefore provides a more reliable basis for the extraction of decision-making rules of labeled/unlabeled datasets. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v63/n9/abs/jors2011103a.html