Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Paolo Canu
Documents disponibles écrits par cet auteur
Affiner la rechercheDirect synthesis of hydrogen peroxide in a trickle bed reactor / Pierdomenico Biasi in Industrial & engineering chemistry research, Vol. 51 N° 26 (Juillet 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 8883-8890
Titre : Direct synthesis of hydrogen peroxide in a trickle bed reactor : Comparison of Pd - based catalysts Type de document : texte imprimé Auteurs : Pierdomenico Biasi, Auteur ; Paolo Canu, Auteur ; Federica Menegazzo, Auteur Année de publication : 2012 Article en page(s) : pp. 8883-8890 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Catalyst Trickle bed reactor Hydrogen peroxide Résumé : Palladium catalysts based on different supports, silica (SiO2), zirconia (Z), sulfated ceria (CeS), and sulfated zirconia (ZS), previously tested in a semibatch reactor, were chosen to demonstrate how the direct synthesis process can be improved by continuous operation in a three-phase fixed bed. The gas and liquid flow rates were systematically varied to find suitable combinations for a maximum hydrogen peroxide production rate and selectivity. Different catalysts gave the same results in terms of selectivity and production rate with different operating conditions. A selectivity of 60% and 70% was found with two different catalysts (namely, Pd-ZS and Pd-CeS). Very interestingly those selectivities were found with different gas and liquid flow rates (i.e., 70% of selectivity for Pd-ZS with liquid 1 mL/min and gas 2.7 mL/min, liquid 0.5 mL/min MeOH and gas 4 mL/ min, and finally liquid 2 mL/min MeOH and gas 1 mL/min 65% of selectivity for Pd-CeS with liquid 1 mL/min and gas 4 mL/ min). Moreover, the same maximum production rate of H2O2 around 3 μmol/min for Pd-CeS, Pd-ZS, and Pd-Z was achieved with different liquid and gas flow rates. Continuous operation and reactor technology play important roles in this green synthesis: optimization of gas and liquid flow rates and contact time between the liquid and the solid (catalysts) phase lead to a dramatic selectivity improvement in a continuous reactor, raising the value obtained in the semibatch reactor from 30% to 70%. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107443 [article] Direct synthesis of hydrogen peroxide in a trickle bed reactor : Comparison of Pd - based catalysts [texte imprimé] / Pierdomenico Biasi, Auteur ; Paolo Canu, Auteur ; Federica Menegazzo, Auteur . - 2012 . - pp. 8883-8890.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 8883-8890
Mots-clés : Catalyst Trickle bed reactor Hydrogen peroxide Résumé : Palladium catalysts based on different supports, silica (SiO2), zirconia (Z), sulfated ceria (CeS), and sulfated zirconia (ZS), previously tested in a semibatch reactor, were chosen to demonstrate how the direct synthesis process can be improved by continuous operation in a three-phase fixed bed. The gas and liquid flow rates were systematically varied to find suitable combinations for a maximum hydrogen peroxide production rate and selectivity. Different catalysts gave the same results in terms of selectivity and production rate with different operating conditions. A selectivity of 60% and 70% was found with two different catalysts (namely, Pd-ZS and Pd-CeS). Very interestingly those selectivities were found with different gas and liquid flow rates (i.e., 70% of selectivity for Pd-ZS with liquid 1 mL/min and gas 2.7 mL/min, liquid 0.5 mL/min MeOH and gas 4 mL/ min, and finally liquid 2 mL/min MeOH and gas 1 mL/min 65% of selectivity for Pd-CeS with liquid 1 mL/min and gas 4 mL/ min). Moreover, the same maximum production rate of H2O2 around 3 μmol/min for Pd-CeS, Pd-ZS, and Pd-Z was achieved with different liquid and gas flow rates. Continuous operation and reactor technology play important roles in this green synthesis: optimization of gas and liquid flow rates and contact time between the liquid and the solid (catalysts) phase lead to a dramatic selectivity improvement in a continuous reactor, raising the value obtained in the semibatch reactor from 30% to 70%. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107443