Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ahmet K. Avci
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling and simulation of hydrocracking of fischer – tropsch hydrocarbons in a catalytic microchannel reactor / M. Irfan Hosukoglu in Industrial & engineering chemistry research, Vol. 51 N° 26 (Juillet 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 8913-8921
Titre : Modeling and simulation of hydrocracking of fischer – tropsch hydrocarbons in a catalytic microchannel reactor Type de document : texte imprimé Auteurs : M. Irfan Hosukoglu, Auteur ; Mustafa Karakaya, Auteur ; Ahmet K. Avci, Auteur Année de publication : 2012 Article en page(s) : pp. 8913-8921 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Microreactor Catalytic reaction Hydrocracking Modeling Résumé : Product quality of Fischer-Tropsch synthesis is improved by catalytic hydrocracking which converts heavy hydrocarbon fractions (wax) to commercially valuable fuels. The process is highly exothermic and requires strict temperature control; high temperatures cause overcracking to lower, commercially undesired hydrocarbons, whereas low temperatures reduce the conversions. Running hydrocracking in microchannel reactors is promising, since submillimeter dimensions lead to significant compaction that favors robust temperature control. This work investigates modeling and simulation of hydrocracking in a heat-exchange-integrated microchannel reactor involving parallel groups of square-shaped cooling and catalyst-coated reaction channels. Effects of material type and thickness of the wall separating the channels, and operating parameters (reactant and coolant feed temperatures and space velocity of the reactant stream) on reaction temperature and product distribution are investigated. Mole fractions of the products in the diesel cut (C19―C22) and jet cut (C11―C18) ranges are highly sensitive to operating parameters due to fast heat transport. The process suffers from overcooling and reduced conversions in reactors characterized by thicker walls with high thermal conductivities, whereas hot spots may exist in reactors characterized by thinner walls with low thermal conductivities. Temperature and product distributions in hydrocracking can be optimized within the pertinent operating window by careful configuration of the reactor. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107446 [article] Modeling and simulation of hydrocracking of fischer – tropsch hydrocarbons in a catalytic microchannel reactor [texte imprimé] / M. Irfan Hosukoglu, Auteur ; Mustafa Karakaya, Auteur ; Ahmet K. Avci, Auteur . - 2012 . - pp. 8913-8921.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 8913-8921
Mots-clés : Microreactor Catalytic reaction Hydrocracking Modeling Résumé : Product quality of Fischer-Tropsch synthesis is improved by catalytic hydrocracking which converts heavy hydrocarbon fractions (wax) to commercially valuable fuels. The process is highly exothermic and requires strict temperature control; high temperatures cause overcracking to lower, commercially undesired hydrocarbons, whereas low temperatures reduce the conversions. Running hydrocracking in microchannel reactors is promising, since submillimeter dimensions lead to significant compaction that favors robust temperature control. This work investigates modeling and simulation of hydrocracking in a heat-exchange-integrated microchannel reactor involving parallel groups of square-shaped cooling and catalyst-coated reaction channels. Effects of material type and thickness of the wall separating the channels, and operating parameters (reactant and coolant feed temperatures and space velocity of the reactant stream) on reaction temperature and product distribution are investigated. Mole fractions of the products in the diesel cut (C19―C22) and jet cut (C11―C18) ranges are highly sensitive to operating parameters due to fast heat transport. The process suffers from overcooling and reduced conversions in reactors characterized by thicker walls with high thermal conductivities, whereas hot spots may exist in reactors characterized by thinner walls with low thermal conductivities. Temperature and product distributions in hydrocracking can be optimized within the pertinent operating window by careful configuration of the reactor. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107446