Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Shih-Wei Liu
Documents disponibles écrits par cet auteur
Affiner la rechercheA hybrid neural network model predictive control with zone penalty weights for type 1 diabetes mellitus / Shih-Wei Liu in Industrial & engineering chemistry research, Vol. 51 N° 26 (Juillet 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 9041-9060
Titre : A hybrid neural network model predictive control with zone penalty weights for type 1 diabetes mellitus Type de document : texte imprimé Auteurs : Shih-Wei Liu, Auteur ; Huang, Hsiao-Ping, Auteur ; Chia-Hung Lin, Auteur Année de publication : 2012 Article en page(s) : pp. 9041-9060 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Predictive control Modeling Neural network Résumé : In this paper, a hybrid neural network model is developed to predict and control the blood glucose (BG) of the patient who has type 1 diabetes mellitus (T1DM). The proposed model consists of two parts: a linear finite impulse response (FIR) model and a nonlinear autoregessive exogenous input (NARX) network. A recently developed and well-acknowledged meal simulation model of the glucose-insulin system for T1DM is employed to create virtual subjects. Data from virtual subjects are used to identify an intermediate physiological model, and then our proposed hybrid model is trained and validated based on this intermediate model. The key features of the resulting hybrid model are that it reveals satisfactory accuracy of long-term prediction and does not require an immeasurable state for model initialization. The developed hybrid model is then embedded in a nonlinear model predictive control (MPC) controller with zone penalty weights, and this closed-loop controller is implemented on these virtual subjects for simulation-based preclinical testing. The results show that promising glycemic control performance can be achieved. Moreover, this overall BG control methodology is easily portable and has the ability to arbitrarily start the therapeutic control at any initial point. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107462 [article] A hybrid neural network model predictive control with zone penalty weights for type 1 diabetes mellitus [texte imprimé] / Shih-Wei Liu, Auteur ; Huang, Hsiao-Ping, Auteur ; Chia-Hung Lin, Auteur . - 2012 . - pp. 9041-9060.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 9041-9060
Mots-clés : Predictive control Modeling Neural network Résumé : In this paper, a hybrid neural network model is developed to predict and control the blood glucose (BG) of the patient who has type 1 diabetes mellitus (T1DM). The proposed model consists of two parts: a linear finite impulse response (FIR) model and a nonlinear autoregessive exogenous input (NARX) network. A recently developed and well-acknowledged meal simulation model of the glucose-insulin system for T1DM is employed to create virtual subjects. Data from virtual subjects are used to identify an intermediate physiological model, and then our proposed hybrid model is trained and validated based on this intermediate model. The key features of the resulting hybrid model are that it reveals satisfactory accuracy of long-term prediction and does not require an immeasurable state for model initialization. The developed hybrid model is then embedded in a nonlinear model predictive control (MPC) controller with zone penalty weights, and this closed-loop controller is implemented on these virtual subjects for simulation-based preclinical testing. The results show that promising glycemic control performance can be achieved. Moreover, this overall BG control methodology is easily portable and has the ability to arbitrarily start the therapeutic control at any initial point. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107462