Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Polina V. Oliferenko
Documents disponibles écrits par cet auteur
Affiner la rechercheBoiling points of ternary azeotropic mixtures modeled with the use of the universal solvation equation and neural networks / Alexander A. Oliferenko in Industrial & engineering chemistry research, Vol. 51 N° 26 (Juillet 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 9123-9128
Titre : Boiling points of ternary azeotropic mixtures modeled with the use of the universal solvation equation and neural networks Type de document : texte imprimé Auteurs : Alexander A. Oliferenko, Auteur ; Polina V. Oliferenko, Auteur ; José S. Torrecilla, Auteur Année de publication : 2012 Article en page(s) : pp. 9123-9128 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Neural network Modeling Azeotropic mixture Boiling point Résumé : Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure-property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107469 [article] Boiling points of ternary azeotropic mixtures modeled with the use of the universal solvation equation and neural networks [texte imprimé] / Alexander A. Oliferenko, Auteur ; Polina V. Oliferenko, Auteur ; José S. Torrecilla, Auteur . - 2012 . - pp. 9123-9128.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 26 (Juillet 2012) . - pp. 9123-9128
Mots-clés : Neural network Modeling Azeotropic mixture Boiling point Résumé : Azeotropic mixtures, an important class of technological fluids, constitute a challenge to theoretical modeling of their properties. The number of possible intermolecular interactions in multicomponent systems grows combinatorially as the number of components increases. Ab initio methods are barely applicable, because rather large clusters would need to be calculated, which is prohibitively time-consuming. The quantitative structure-property relationships (QSPR) method, which is efficient and extremely fast, could be a viable alternative approach, but the QSPR methodology requires adequate modification to provide a consistent treatment of multicomponent mixtures. We now report QSPR models for the prediction of normal boiling points of ternary azeotropic mixtures based on a training set of 78 published data points. A limited set of meticulously designed descriptors, together comprising the Universal Solvation Equation (J. Chem. Inf. Model. 2009, 49, 634), was used to provide input parameters for multiple regression and neural network models. The multiple regression model thus obtained is good for explanatory purposes, while the neural network model provides a better quality of fit, which is as high as 0.995 in terms of squared correlation coefficient. This model was also properly validated and analyzed in terms of parameter contributions and their nonlinearity characteristics. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26107469