Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J. Joseph
Documents disponibles écrits par cet auteur
Affiner la rechercheCombined cycle off-design performance estimation / S. Can Gülen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 1 (Janvier 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 11 p.
Titre : Combined cycle off-design performance estimation : a second-law perspective Type de document : texte imprimé Auteurs : S. Can Gülen, Auteur ; J. Joseph, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Combined cycle power stations Thermodynamics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A combined cycle power plant (or any power plant, for that matter) does very rarely—if ever—run at the exact design point ambient and loading conditions. Depending on the demand for electricity, market conditions, and other considerations of interest to the owner of the plant and the existing ambient conditions, a combined cycle plant will run under boundary conditions that are significantly different from those for which individual components are designed. Accurate calculation of the “off-design” performance of the overall combined cycle system and its key subsystems requires highly detailed and complicated computer models. Such models are crucial to high-fidelity simulation of myriad off-design performance scenarios for control system development to ensure safe and reliable operability in the field. A viable option in lieu of sophisticated system simulation is making use of the normalized curves that are generated from rigorous model runs and applying the factors read from such curves to a known design performance to calculate the off-design performance. This is the common method adopted in the fulfillment of commercial transactions. These curves; however, are highly system-specific and their broad applicability to a wide variety of configurations is limited. Utilizing the key principles of the second law of thermodynamics, this paper describes a simple, physics-based calculation method to estimate the off-design performance of a combined cycle power plant. The method is shown to be quite robust within a wide range of operating regimes for a generic combined cycle system. As such, a second-law-based approach to off-design performance estimation is a highly viable tool for plant engineers and operators in cases where calculation speed with a small sacrifice in fidelity is of prime importance. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] [article] Combined cycle off-design performance estimation : a second-law perspective [texte imprimé] / S. Can Gülen, Auteur ; J. Joseph, Auteur . - 2012 . - 11 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 11 p.
Mots-clés : Combined cycle power stations Thermodynamics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A combined cycle power plant (or any power plant, for that matter) does very rarely—if ever—run at the exact design point ambient and loading conditions. Depending on the demand for electricity, market conditions, and other considerations of interest to the owner of the plant and the existing ambient conditions, a combined cycle plant will run under boundary conditions that are significantly different from those for which individual components are designed. Accurate calculation of the “off-design” performance of the overall combined cycle system and its key subsystems requires highly detailed and complicated computer models. Such models are crucial to high-fidelity simulation of myriad off-design performance scenarios for control system development to ensure safe and reliable operability in the field. A viable option in lieu of sophisticated system simulation is making use of the normalized curves that are generated from rigorous model runs and applying the factors read from such curves to a known design performance to calculate the off-design performance. This is the common method adopted in the fulfillment of commercial transactions. These curves; however, are highly system-specific and their broad applicability to a wide variety of configurations is limited. Utilizing the key principles of the second law of thermodynamics, this paper describes a simple, physics-based calculation method to estimate the off-design performance of a combined cycle power plant. The method is shown to be quite robust within a wide range of operating regimes for a generic combined cycle system. As such, a second-law-based approach to off-design performance estimation is a highly viable tool for plant engineers and operators in cases where calculation speed with a small sacrifice in fidelity is of prime importance. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...]