Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Michael W. R. Savage
Documents disponibles écrits par cet auteur
Affiner la rechercheThe influence of crystal orientation on the elastic stresses of a single crystal nickel-based turbine blade / Michael W. R. Savage in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 1 (Janvier 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 07 p.
Titre : The influence of crystal orientation on the elastic stresses of a single crystal nickel-based turbine blade Type de document : texte imprimé Auteurs : Michael W. R. Savage, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Blades Casting Crystal orientation Elastic constants Fatigue Finite element analysis Geometry Nickel Turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Single crystal nickel-based turbine blades are directionally solidified during the casting process with the crystallographic direction [001] aligned with the blade stacking axis. This alignment is usually controlled within 10 deg, known as the Primary angle. The rotation of the single crystal about the [001] axis is generally not controlled and this is known as the Secondary angle. The variation in Primary and Secondary angles relative to the blade geometry means that the stress response from blade to blade will be different, even for the same loading conditions. This paper investigates the influence of single crystal orientation on the elastic stresses of a CMSX-4 turbine blade root attachment using finite element analysis. The results demonstrate an appreciable variation in elastic stress when analyzed over the controlled Primary angle, and are further compounded by the uncontrolled Secondary angle. The maximum stress range will have a direct impact on the fatigue resistance of the turbine blade. By optimizing the Secondary angle variation the elastic stresses can be reduced, giving the potential to enhance the fatigue resistance of the turbine blade. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] [article] The influence of crystal orientation on the elastic stresses of a single crystal nickel-based turbine blade [texte imprimé] / Michael W. R. Savage, Auteur . - 2012 . - 07 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 07 p.
Mots-clés : Blades Casting Crystal orientation Elastic constants Fatigue Finite element analysis Geometry Nickel Turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Single crystal nickel-based turbine blades are directionally solidified during the casting process with the crystallographic direction [001] aligned with the blade stacking axis. This alignment is usually controlled within 10 deg, known as the Primary angle. The rotation of the single crystal about the [001] axis is generally not controlled and this is known as the Secondary angle. The variation in Primary and Secondary angles relative to the blade geometry means that the stress response from blade to blade will be different, even for the same loading conditions. This paper investigates the influence of single crystal orientation on the elastic stresses of a CMSX-4 turbine blade root attachment using finite element analysis. The results demonstrate an appreciable variation in elastic stress when analyzed over the controlled Primary angle, and are further compounded by the uncontrolled Secondary angle. The maximum stress range will have a direct impact on the fatigue resistance of the turbine blade. By optimizing the Secondary angle variation the elastic stresses can be reduced, giving the potential to enhance the fatigue resistance of the turbine blade. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...]